已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且滿足a1=b1=1,b3=a3-1,a2-1=b3-b2.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記Tn為{bn}的前n項(xiàng)和,求證:Tn?Tn+2<T2n+1;
(Ⅲ)記cn=6n+13an?an+2?bn+2,n為奇數(shù) an2?an2+1bn+1,n為偶數(shù)
,數(shù)列{cn}的前2n項(xiàng)和為K2n,求證:K2n<5.
T
2
n
+
1
6 n + 13 a n ? a n + 2 ? b n + 2 , n 為奇數(shù) |
a n 2 ? a n 2 + 1 b n + 1 , n 為偶數(shù) |
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:646引用:1難度:0.2
相似題
-
1.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個(gè)人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個(gè)問題中,以一個(gè)月31天計(jì)算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn.若關(guān)于n的不等式
恒成立,則實(shí)數(shù)t的取值范圍為( ?。?/h2>Sn-62<a2n+1-tan+1發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6 -
2.已知等比數(shù)列a1,a2,…,a9各項(xiàng)為正且公比q≠1,則( )
發(fā)布:2024/11/25 22:30:1組卷:33引用:2難度:0.8 -
3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( ?。?/h2>am+am+1+…+am+k-am+1Sk<2023(k∈N*)發(fā)布:2024/12/7 11:0:2組卷:200引用:4難度:0.5
把好題分享給你的好友吧~~