試卷征集
加入會員
操作視頻
當(dāng)前位置: 試題詳情

過點B(1,1)能否作直線m,使其與雙曲線x2-
y
2
2
=1交于P,Q兩點,且B是PQ的中點?這樣的直線m若存在,求出它的方程;若不存在,請說明理由.

【答案】解:設(shè)過B(1,1)的直線的參數(shù)方程為
x
=
1
+
tcosα
y
=
1
+
tsinα
(t為參數(shù)),
代入2x2-y2-2=0,并整理得
t2(2cos2α-sin2α)+2t(2cosα-sinα)-1=0.
由已知|BP|=|BQ|,則t1+t2=0,
即-
2
2
cosα
-
sinα
2
co
s
2
α
-
si
n
2
α
=0,得sinα=2cosα,
若存在P,Q關(guān)于B點對稱,則t1t2=
-
1
2
co
s
2
α
-
si
n
2
α
<0.
而sinα=2cosα?xí)r,t1t2=
-
1
2
co
s
2
α
-
4
co
s
2
α
=
1
2
co
s
2
α
>0,
故這樣的對稱點不存在,即滿足條件的直線m不存在.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:10引用:1難度:0.5
相似題
  • 1.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
    π
    3
    ,e1,e2分別為橢圓和雙曲線的離心率,則
    4
    e
    1
    e
    2
    3
    e
    1
    2
    +
    e
    2
    2
    的值為( ?。?/h2>

    發(fā)布:2025/1/2 23:30:3組卷:203引用:2難度:0.5
  • 2.若雙曲線
    x
    2
    8
    -
    y
    2
    m
    =1的漸近線方程為y=±2x,則實數(shù)m等于( ?。?/h2>

    發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9
  • 3.已知雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    的右焦點為F(2,0),漸近線方程為
    3
    x
    ±
    y
    =
    0
    ,則該雙曲線實軸長為( ?。?/h2>

    發(fā)布:2025/1/2 19:0:5組卷:136引用:2難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正