如圖,已知四邊形ABCD為正方形,AB=22,點(diǎn)E為對角線AC上一動點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.
2
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1083引用:8難度:0.1
相似題
-
1.(1)如圖1,在四邊形ABCD中,DA=DC,∠A=∠C=90°,E、F分別是邊AB、BC上的點(diǎn),且∠EDF=
∠ADC,請直接寫出圖中線段AE、EF、FC之間的數(shù)量關(guān)系 .12
(2)如圖2,在四邊形ABCD中,DA=DC,∠A+∠C=180°,E、F分別是邊AB、BC上的點(diǎn),且∠EDF=∠ADC,上述結(jié)論是否仍然成立,并說明理由.12
(3)如圖3,在四邊形ABCD中,DA=DC,∠A+∠BCD=180°,E、F分別是邊AB、BC延長線上的點(diǎn),且∠EDF=∠ADC,(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,線段AE、EF、FC之間又有怎樣的數(shù)量關(guān)系,請直接寫出你的猜想,并說明理由.12發(fā)布:2025/6/9 2:30:1組卷:165引用:1難度:0.2 -
2.如圖,正方形ABCD的邊長為4,點(diǎn)E在邊AB上,BE=1,∠DAM=45°,點(diǎn)F在射線AM上,且AF=
,過點(diǎn)F作AD的平行線交BA的延長線于點(diǎn)H,CF與AD相交于點(diǎn)G,連接EC、EG,EF.下列結(jié)論:①∠EFG=45°;②△AEG的周長為8;③△CEG∽△AFG;④△CEG的面積為6.8.其中正確的個數(shù)是( ?。?/h2>2發(fā)布:2025/6/9 3:0:1組卷:680引用:3難度:0.2 -
3.問題情境:數(shù)學(xué)活動課上,老師組織同學(xué)們以“正方形”為主題開展數(shù)學(xué)活動.
動手實(shí)踐:
(1)如圖①,已知正方形紙片ABCD,勤奮小組將正方形紙片沿過點(diǎn)A的直線折疊,使點(diǎn)B落在正方形ABCD的內(nèi)部,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)M,折痕為AE,再將紙片沿過點(diǎn)A的直線折疊,使AD與AM重合,折痕為AF,易知點(diǎn)E、M、F共線,則∠EAF=度.
拓展應(yīng)用:
(2)如圖②,騰飛小組在圖①的基礎(chǔ)上進(jìn)行如下操作:將正方形紙片沿EF繼續(xù)折疊,使得點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)N,他們發(fā)現(xiàn),當(dāng)點(diǎn)E的位置不同時,點(diǎn)N的位置也不同,當(dāng)點(diǎn)E在BC邊的某一位置時,點(diǎn)N恰好落在折痕AE上.
①則∠CFE=度.
②設(shè)AM與NF的交點(diǎn)為點(diǎn)P,運(yùn)用(1)、(2)操作所得結(jié)論,求證:△ANP≌△FNE.
解決問題:
(3)在圖②中,若AB=3,請直接寫出線段MP的長.發(fā)布:2025/6/9 2:0:7組卷:1098引用:9難度:0.3