試卷征集
加入會員
操作視頻

裴波那契數(shù)列{Fn},因數(shù)學家萊昂納多?裴波那契以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”,該數(shù)列{Fn}滿足F1=F2=1,且Fn+2=Fn+1+Fn(n∈N*).盧卡斯數(shù)列{Ln}是以數(shù)學家愛德華?盧卡斯命名,與裴波那契數(shù)列聯(lián)系緊密,即L1=1,且Ln+1=Fn+Fn+2(n∈N*),則F2023=( ?。?/h1>

【考點】數(shù)列遞推式
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/12 8:0:9組卷:270引用:4難度:0.5
相似題
  • 1.設a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則(  )

    發(fā)布:2024/12/29 12:30:1組卷:3196引用:9難度:0.4
  • 2.設Sn為數(shù)列{an}的前n項和,若
    a
    1
    =
    6
    5
    ,5an+1=5an+2,則S5=(  )

    發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7
  • 3.在數(shù)列{an}中,a1=1,an+1=2an+2n
    (1)設bn=
    a
    n
    2
    n
    -
    1
    .證明:數(shù)列{bn}是等差數(shù)列;
    (2)求數(shù)列{an}的通項公式.

    發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正