裴波那契數(shù)列{Fn},因數(shù)學家萊昂納多?裴波那契以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”,該數(shù)列{Fn}滿足F1=F2=1,且Fn+2=Fn+1+Fn(n∈N*).盧卡斯數(shù)列{Ln}是以數(shù)學家愛德華?盧卡斯命名,與裴波那契數(shù)列聯(lián)系緊密,即L1=1,且Ln+1=Fn+Fn+2(n∈N*),則F2023=( ?。?/h1>
1 3 L 2022 + 1 6 L 2024 | 1 3 L 2022 + 1 7 L 2024 |
1 5 L 2022 + 1 5 L 2024 | - 1 5 L 2022 + 2 5 L 2024 |
【考點】數(shù)列遞推式.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/12 8:0:9組卷:270引用:4難度:0.5
相似題
-
1.設a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( )
A.當b= 時,a10>1012B.當b= 時,a10>1014C.當b=-2時,a10>10 D.當b=-4時,a10>10 發(fā)布:2024/12/29 12:30:1組卷:3196引用:9難度:0.4 -
2.設Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( )a1=65A. 265B. 465C.10 D. 565發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3