(1)如圖1,正方形ABCD的邊長為72,點(diǎn)E在邊AB上,連接ED,過點(diǎn)D作FD⊥DE與BC的延長線相交于點(diǎn)F,連接EF與邊CD相交于點(diǎn)G、與對角線BD相交于點(diǎn)H.
①若BD=BF,求BE的長;
②若∠2=2∠1,求證:HF=HE+HD.
(2)拓展:如圖2,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點(diǎn)E、F同時(shí)從點(diǎn)D出發(fā),以相同的速度分別沿DC、DB方向移動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí),運(yùn)動(dòng)停止,直線AE分別與CF、BC相交于G、H,則在點(diǎn)E、F移動(dòng)過程中,點(diǎn)G移動(dòng)路線的長度為多少?并求出BG的最小值為多少?(直接寫答案,不需要過程)

7
2
【考點(diǎn)】四邊形綜合題.
【答案】(1)①14;②證明見解答;
(2)點(diǎn)G的運(yùn)動(dòng)軌跡的長為:;BG的最小值為:.
2
-
14
(2)點(diǎn)G的運(yùn)動(dòng)軌跡的長為:
2
π
2
10
-
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/22 8:0:2組卷:232引用:2難度:0.4
相似題
-
1.定義:有一組鄰邊相等且對角互補(bǔ)的四邊形稱為“等補(bǔ)四邊形”.
(1)下列選項(xiàng)中一定是“等補(bǔ)四邊形”的是 ;
A.平行四邊形
B.矩形
C.正方形
D.菱形
(2)如圖1,在邊長為a的正方形ABCD中,E為CD邊上一動(dòng)點(diǎn)(E不與C、D重合),AE交BD于點(diǎn)F,過F作FH⊥AE交BC于點(diǎn)H.
①試判斷四邊形AFHB是否為“等補(bǔ)四邊形”并說明理由;
②如圖2,連接EH,求三角形CEH的周長;
③若四邊形ECHF是“等補(bǔ)四邊形”,求CE的長.發(fā)布:2025/5/22 13:0:1組卷:945引用:5難度:0.2 -
2.如圖①,點(diǎn)E為正方形ABCD內(nèi)一動(dòng)點(diǎn),且∠AEB=90°,將BE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°,得到BE′,連結(jié)CE′,延長AE交CE′于點(diǎn)F,連接DE.
(1)求證△ABE≌△CBE′.
(2)如圖②,若DA=DE,請猜想線段CE′與FE′的數(shù)量關(guān)系并加以證明.
(3)如圖①,若AB=15,CF=3,求出DE的長.
(4)若正方形邊長為2a,直接寫出DE的最小值(用含a的代數(shù)式表示).發(fā)布:2025/5/22 13:30:1組卷:153引用:3難度:0.1 -
3.我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”.
(1)概念理解:
請你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子,例如 是等鄰角四邊形;
(2)問題探究:
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的垂直平分線恰好交于AB邊上一點(diǎn)P,連接AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展:
如圖2,在△ABC與△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將△ABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到△AB′D′(如圖3),當(dāng)四邊形AD′BC為等鄰角四邊形時(shí),求出它的面積.發(fā)布:2025/5/22 11:30:2組卷:623引用:2難度:0.2