我們知道,多項(xiàng)式的因式分解就是將一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式.通過(guò)因式分解,我們常常將一個(gè)次數(shù)比較高的多項(xiàng)式轉(zhuǎn)化成幾個(gè)次數(shù)較低的整式的積,來(lái)達(dá)到降次化簡(jiǎn)的目的.這個(gè)思想可以引領(lǐng)我們解決很多相對(duì)復(fù)雜的代數(shù)問(wèn)題.
例如:方程2x2+3x=0就可以這樣來(lái)解:
解:原方程可化為:x(2x+3)=0
所以x=0或者2x+3=0
解方程2x+3=0得:x=-32
所以原方程的解:x1=0,x2=-32
根據(jù)你的理解,結(jié)合所學(xué)知識(shí),解決以下問(wèn)題:
(1)解方程:(x+3)2-4x2=0
(2)已知:△ABC的三邊為4、x、y,請(qǐng)你判斷代數(shù)式16y+2x2-32-2y2的值的符號(hào).
3
2
3
2
【考點(diǎn)】因式分解的應(yīng)用.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/17 15:0:1組卷:270引用:2難度:0.3
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿(mǎn)足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2504引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫(xiě)明驗(yàn)證過(guò)程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~