已知雙曲線x2a2-y2b2=1(a>0,b>0)的離心率e=233,過(guò)點(diǎn)A(0,-b)和點(diǎn)B(a,0)的直線與原點(diǎn)的距離為32,求此雙曲線的方程.
x
2
a
2
y
2
b
2
2
3
3
3
2
【考點(diǎn)】雙曲線的幾何特征.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:93引用:3難度:0.3
相似題
-
1.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點(diǎn),P是它們的公共點(diǎn),且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22發(fā)布:2025/1/2 23:30:3組卷:200引用:2難度:0.5 -
2.若雙曲線
-x28=1的漸近線方程為y=±2x,則實(shí)數(shù)m等于( )y2m發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
3.已知雙曲線
的右焦點(diǎn)為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實(shí)軸長(zhǎng)為( )3x±y=0發(fā)布:2025/1/2 19:0:5組卷:136引用:2難度:0.7