定義一種新運算“⊕”:x⊕y=ln(ex+ey),x,y∈R,這種運算有許多優(yōu)美的性質(zhì):
如x⊕y=y⊕x,(x⊕y)⊕z=x⊕(y⊕z)等.
已知函數(shù)f(x)=2ex-a((x-1)⊕(x-1)),a∈R.
(1)當(dāng)a=1時,求f(1)的值;
(2)設(shè)f(x)有兩個零點x1,x2(x1<x2),若kex1+x2<a24恒成立,求正實數(shù)k的取值范圍.
k
e
x
1
+
x
2
<
a
2
4
【考點】函數(shù)恒成立問題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:19引用:1難度:0.2
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:11引用:5難度:0.5 -
2.對于任意x1,x2∈(2,+∞),當(dāng)x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6 -
3.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:535引用:36難度:0.5
把好題分享給你的好友吧~~