已知平面內(nèi)動點P(x,y),P到定點F(6,0)的距離與P到定直線l:x=463的距離之比為32.
(1)記動點P的軌跡為曲線C,求C的標(biāo)準(zhǔn)方程.
(2)已知點M是圓x2+y2=10上任意一點,過點M作曲線C的兩條切線,切點分別是A,B,求△MAB面積的最大值,并確定此時點M的坐標(biāo).
注:橢圓:x2a2+y2b2=1(a>b>0)上任意一點P(x0,y0)處的切線方程是:x0xa2+y0yb2=1.
F
(
6
,
0
)
l
:
x
=
4
6
3
3
2
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
x
0
x
a
2
+
y
0
y
b
2
=
1
【考點】橢圓相關(guān)動點軌跡.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:88引用:1難度:0.6
相似題
-
1.已知橢圓
的兩焦點為F1,F(xiàn)2,x軸上方兩點A,B在橢圓上,AF1與BF2平行,AF2交BF1于P.過P且傾斜角為α(α≠0)的直線從上到下依次交橢圓于S,T.若|PS|=β|PT|,則“α為定值”是“β為定值”的( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/8/3 8:0:9組卷:54引用:1難度:0.4 -
2.已知P是橢圓
+x236=1上的動點,過點P作PD⊥x軸,D為垂足,點M滿足y29=MD,求點M的軌跡方程.13PD發(fā)布:2024/8/2 8:0:9組卷:11引用:0難度:0.6 -
3.已知F是橢圓
的左焦點,O為坐標(biāo)原點,M為橢圓上任意一點,橢圓的離心率為C:x2a2+y2b2=1(a>b>0),△MOF的面積的最大值為32.32
(1)求橢圓C的方程;
(2)A,B為橢圓的左,右頂點,點P(1,0),當(dāng)M不與A,B重合時,射線MP交橢圓C于點N,直線AM,BN交于點T,求∠ATB的最大值.發(fā)布:2024/8/4 8:0:9組卷:147引用:5難度:0.5
相關(guān)試卷