如圖,對稱軸為直線x=72的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標(biāo);
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
7
2
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/27 11:30:1組卷:1759引用:75難度:0.1
相似題
-
1.如圖1,拋物線y=ax2+bx+c(a≠0)與x軸相交于點A、B(點B在點A左側(cè)),與y軸相交于點C(0,3).已知點A坐標(biāo)為(1,0),△ABC面積為6.
(1)求拋物線的解析式;
(2)點P是直線BC上方拋物線上一動點,過點P作直線BC的垂線,垂足為點E,過點P作PF∥y軸交BC于點F,求△PEF周長的最大值及此時點P的坐標(biāo);
(3)如圖2,將該拋物線向左平移2個單位長度得到新的拋物線y',平移后的拋物線與原拋物線相交于點D,點M為直線BC上的一點,點N是平面坐標(biāo)系內(nèi)一點,是否存在點M,N,使以點B,D,M,N為頂點的四邊形為菱形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/4 17:30:2組卷:486引用:3難度:0.4 -
2.如圖,拋物線y=a(x+1)(x-3)交x軸于A、B兩點(點A在點B的左側(cè)),交y軸負(fù)半軸于C點,已知S△ABC=6.
(1)求拋物線的解析式;
(2)在直線BC下方的拋物線上取一點P,連接AP交BC于E點,當(dāng)tan∠AEC=4時,求點P的坐標(biāo);
(3)點M、N均在拋物線上,設(shè)點M的橫坐標(biāo)為m,點N的橫坐標(biāo)為n,(0<n<m<3),連接MN,連接AM、AN分別與y軸交于點S、T,∠AMN=2∠BAM,請問3OS+ST是否為定值?若是,求出其值;若不是,說明理由.發(fā)布:2025/6/4 17:30:2組卷:236引用:1難度:0.1 -
3.已知拋物線y=ax2+bx-2與x軸交于A(-1,0),B(4,0)兩點,與y軸交于點C.直線l由直線BC平移得到,與y軸交于點E(0,n).四邊形MNPQ的四個頂點的坐標(biāo)分別為M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
(1)填空:a=,b=;
(2)若點M在第二象限,直線l與經(jīng)過點M的雙曲線y=有且只有一個交點,求n2的最大值;kx
(3)當(dāng)直線l與四邊形MNPQ、拋物線y=ax2+bx-2都有交點時,存在直線l,對于同一條直線l上的交點,直線l與四邊形MNPQ的交點的縱坐標(biāo)都不大于它與拋物線y=ax2+bx-2的交點的縱坐標(biāo).
①當(dāng)m=-3時,直接寫出n的取值范圍;
②求m的取值范圍.發(fā)布:2025/6/5 8:30:1組卷:1460引用:3難度:0.1