如圖,已知函數C1:x2a2+y2b2=1(a>b>0)與等軸雙曲線C2共頂點(±22,0),過橢圓C1上一點P(2,-1)作兩直線與橢圓C1相交于相異的兩點A,B,直線PA、PB的傾斜角互補.直線AB與x,y軸正半軸相交,分別記交點為M,N.
(1)求橢圓C1和雙曲線C2的方程;
(2)若△PMN的面積為54,求直線AB的方程;
(3)若AB與雙曲線C2的左、右兩支分別交于Q、R,求NQNR的范圍.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
(
±
2
2
,
0
)
5
4
NQ
NR
【考點】直線與圓錐曲線的綜合;雙曲線的幾何特征.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:113難度:0.5
相似題
-
1.已知兩個定點坐標分別是F1(-3,0),F2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
2.點P在以F1,F2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數)的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:65難度:0.7 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7