已知橢圓C的中心為坐標(biāo)原點O,對稱軸為x軸、y軸,且點(3,22)和點(6,2)在橢圓C上,橢圓的左頂點與拋物線Γ:y2=2px(p>0)的焦點F的距離為4.
(1)求橢圓C和拋物線Γ的方程;
(2)直線l:y=kx+m(k≠0)與拋物線Γ交于P,Q兩點,與橢圓C交于M,N兩點.
(?。┤鬽=k,拋物線Γ在點P,Q處的切線交于點S,求證:|PF|?|SQ|2=|QF|?|SP|2;
(ⅱ)若m=-2k,是否存在定點T(x0,0),使得直線MT,NT的傾斜角互補?若存在,求出x0的值;若不存在,請說明理由.
(
3
,
2
2
)
(
6
,
2
)
【考點】直線與圓錐曲線的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:396引用:4難度:0.1
相似題
-
1.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
2.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:67引用:5難度:0.7 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
相關(guān)試卷