【問題初探】
如圖(1),△ABC中,∠BAC=90°,AB=AC,點D是BC上一點,連接AD,以AD為一邊作△ADE,使∠DAE=90°,AD=AE,連接BE,BE與CD的數(shù)量關(guān)系 BE=CDBE=CD,位置關(guān)系 BE⊥CDBE⊥CD.
【類比再探】
如圖(2),△ABC中,∠BAC=90°,AB=AC,點M是AB上一點,點D是BC上一點,連接MD,以MD為一邊作△MDE,使∠DME=90°,MD=ME,連接BE,求∠EBD的度數(shù).
【方法遷移】
如圖(3),Rt△ABC中,∠BAC=90°,∠ACB=30°,BC=6,點M是AB中點.點D是BC上一點且BD=1,連接MD,以MD為一邊作△MDE,使∠DME=90°,MD=3ME,連接BE,求BE的長.

3
ME
【考點】三角形綜合題.
【答案】BE=CD;BE⊥CD
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/6 19:0:6組卷:975引用:6難度:0.2
相似題
-
1.【問題呈現(xiàn)】某學(xué)校的數(shù)學(xué)社團(tuán)成員在學(xué)習(xí)時遇到這樣一個題目:
如圖1,在△ABC中,AB>AC,AD平分∠BAC交BC于點D,點E在DC的延長線上,過E作EF∥AB交AC的延長線于點F,當(dāng)BD:DE=1時,試說明:AF+EF=AB;
【方法探究】
社團(tuán)成員在研究探討后,提出了下面的思路:
在圖1中,延長線段AD,交線段EF的延長線于點M,可以用AAS明△ABD≌△MED,從而得到EM=AB…
(1)請接著完成剩下的說理過程;
【方法運(yùn)用】
(2)在圖1中,若BD:DE=k,則線段AF、EF、AB之間的數(shù)量關(guān)系為 (用含k的式子表示,不需要證明);
(3)如圖2,若AB=7,EF=6,AF=8,BE=12,求出BD的長;
【拓展提升】
(4)如圖3,若DE=2BD,連接AE,已知AB=9,tan∠DAF=,AE=212,且AF>EF,則邊EF的長=.17發(fā)布:2025/5/25 0:0:2組卷:320引用:4難度:0.2 -
2.【基礎(chǔ)鞏固】
(1)如圖1,△ABC為等腰直角三角形,∠ABC=∠ADB=∠BEC=90°,求證:△ADB≌△BEC.
【嘗試應(yīng)用】
(2)如圖2,在(1)的條件下,連結(jié)AE,AE=AC=10,求DE的長.
【拓展提高】
(3)如圖3,在Rt△ABC中,D,E分別在直角邊AB,BC上,AD=2DB=2CE,2∠BAC+∠BED=135°,求tan∠BAC.發(fā)布:2025/5/25 6:0:1組卷:1031引用:2難度:0.1 -
3.如圖,OC為∠AOB的角平分線,∠AOB=α(0°<α<180°),點D為射線OA上一點,點M,N為射線OB上兩個動點且滿足MN=OD,線段ON的垂直平分線交OC于點P,交OB于點Q,連接DP,MP.
(1)如圖1,若α=90°時,線段DP與線段MP的數(shù)量關(guān)系為 .
(2)如圖2,若α為任意角度時,(1)中的結(jié)論是否變化,請說明理由;
(3)如圖3,若α=60°時,連接DM,請直接寫出的最小值.DMON發(fā)布:2025/5/25 1:0:1組卷:92引用:2難度:0.1