試卷征集
加入會(huì)員
操作視頻

當(dāng)我們利用兩種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)由圖2可得等式:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;

(2)利用(1)中所得到的結(jié)論,解決下面的問題:
已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖3中的紙片(足夠多),畫出一種拼圖,使該拼圖可將多項(xiàng)式2a2+5ab+2b2因式分解,并寫出分解結(jié)果.

【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/19 23:0:8組卷:542引用:2難度:0.6
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請寫出該步的代號(hào):

    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->
    ;
    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2508引用:25難度:0.6
  • 2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6
  • 3.閱讀理解:
    能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
    (2)若對任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正