試卷征集
加入會員
操作視頻

已知函數(shù)
f
x
=
3
2
sin
ωx
+
π
6
+
1
2
-
co
s
2
ωx
2
+
π
12
ω
0
的相鄰兩對稱軸間的距離為π.
(1)求ω的值;
(2)證明:f(3x)=3f(x)-4f3(x);
(3)令
g
x
=
f
4
x
-
π
3
,記方程g(x)=m,
m
0
,
3
2
x
[
π
6
,
4
π
3
]
上的根從小到大依次為x1,x2,…,xn,若t=x1+2x2+2x3+?+2xn-1+xn,試求t的值.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/6 8:0:9組卷:18引用:1難度:0.6
相似題
  • 1.已知函數(shù)f(x)=cos2ωx+2sinωxcosωx-sin2ωx(0<ω<4),且_____.
    從以下①②③三個條件中任選一個,補充在上面條件中,并回答問題:①過點
    π
    8
    2
    ;
    函數(shù)f(x)圖象與直線
    y
    +
    2
    =
    0
    的兩個相鄰交點之間的距離為π;③函數(shù)f(x)圖象中相鄰的兩條對稱軸之間的距離為
    π
    2

    (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
    (2)設(shè)函數(shù)
    g
    x
    =
    2
    cos
    2
    x
    -
    π
    3
    ,則是否存在實數(shù)m,使得對于任意
    x
    1
    [
    0
    π
    2
    ]
    ,存在
    x
    2
    [
    0
    ,
    π
    2
    ]
    ,m=g(x2)-f(x1)成立?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.

    發(fā)布:2024/12/29 8:0:12組卷:36引用:4難度:0.4
  • 2.已知向量
    m
    =(
    3
    sin2x+2,cosx),
    n
    =(1,2cosx),設(shè)函數(shù)f(x)=
    m
    ?
    n

    (Ⅰ)求函數(shù)f(x)的最小正周期;
    (Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面積為
    3
    2
    ,求實數(shù)a的值.

    發(fā)布:2024/12/29 10:30:1組卷:7引用:3難度:0.5
  • 3.已知在△ABC中,sinA+cosA=
    17
    25

    ①求sinAcosA
    ②判斷△ABC是銳角三角形還是鈍角三角形
    ③求tanA的值.

    發(fā)布:2024/12/29 7:0:1組卷:66引用:3難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正