隨機(jī)變量的概念是俄國(guó)數(shù)學(xué)家切比雪夫在十九世紀(jì)中葉建立和提倡使用的.切比雪夫在數(shù)論、概率論、函數(shù)逼近論、積分學(xué)等方面均有所建樹,他證明了如下以他名字命名的離散型切比雪夫不等式:設(shè)X為離散型隨機(jī)變量,則P(|X-E(X)|≥λ)≤D(X)λ2,其中λ為任意大于0的實(shí)數(shù).切比雪夫不等式可以使人們?cè)陔S機(jī)變量X的分布未知的情況下,對(duì)事件|X-λ|≤λ的概率作出估計(jì).
(1)證明離散型切比雪夫不等式;
(2)應(yīng)用以上結(jié)論,回答下面問題:
已知正整數(shù)n≥5.在一次抽獎(jiǎng)游戲中,有n個(gè)不透明的箱子依次編號(hào)為1,2,?,n,編號(hào)為i(1≤i≤n)的箱子中裝有編號(hào)為0,1,?,i的i+1個(gè)大小、質(zhì)地均相同的小球.主持人邀請(qǐng)n位嘉賓從每個(gè)箱子中隨機(jī)抽取一個(gè)球,記從編號(hào)為i的箱子中抽取的小球號(hào)碼為Xi,并記X=n∑i=1Xii.對(duì)任意的n,是否總能保證P(X≤0.1n)≥0.01(假設(shè)嘉賓和箱子數(shù)能任意多)?并證明你的結(jié)論.
附:可能用到的公式(數(shù)學(xué)期望的線性性質(zhì)):
對(duì)于離散型隨機(jī)變量X,X1,X2,?,Xn滿足X=n∑i=1Xi,則有E(X)=n∑i=1E(Xi).
D
(
X
)
λ
2
n
∑
i
=
1
X
i
i
n
∑
i
=
1
X
i
n
∑
i
=
1
E
(
X
i
)
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:144引用:2難度:0.6
相似題
-
1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( )
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
把好題分享給你的好友吧~~