在直角坐標(biāo)系xOy中,曲線C1:x2+y2=1經(jīng)過伸縮變換x′=3x y′=y
后得到曲線C2,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:ρsin(θ+π6)=-22.
(1)寫出曲線C2的參數(shù)方程和直線l的直角坐標(biāo)方程;
(2)已知點P為曲線C2上一動點,求點P到直線l距離的最小值,并求出取最小值時點P的直角坐標(biāo).
C
1
:
x
2
+
y
2
=
1
x ′ = 3 x |
y ′ = y |
ρsin
(
θ
+
π
6
)
=
-
2
2
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/19 7:0:1組卷:4引用:2難度:0.5
相似題
-
1.在平面直角坐標(biāo)系xOy中,已知曲線C1:
(t為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)射線與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.已知三個方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7 -
3.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負(fù)半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5