大綱版高一(上)高考題同步試卷:3.5 等比差數(shù)列的前n項(xiàng)和(01)
發(fā)布:2024/11/8 19:30:3
一、選擇題(共5小題)
-
1.等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項(xiàng)和等于( )
A.6 B.5 C.4 D.3 組卷:4733引用:80難度:0.9 -
2.已知數(shù)列{an}滿足3an+1+an=0,a2=-
,則{an}的前10項(xiàng)和等于( ?。?/h2>43A.-6(1-3-10) B. 19(1-3-10)C.3(1-3-10) D.3(1+3-10) 組卷:9802引用:113難度:0.9 -
3.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=9,則a1=( ?。?/h2>
A. 13B. -13C. 19D. -19組卷:7060引用:127難度:0.9 -
4.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若S2=3,S4=15,則S6=( ?。?/h2>
A.31 B.32 C.63 D.64 組卷:6088引用:82難度:0.9 -
5.設(shè)首項(xiàng)為1,公比為
的等比數(shù)列{an}的前n項(xiàng)和為Sn,則( ?。?/h2>23A.Sn=2an-1 B.Sn=3an-2 C.Sn=4-3an D.Sn=3-2an 組卷:4862引用:104難度:0.7
二、填空題(共9小題)
-
6.在數(shù)列{an}中,a1=2,an+1=2an,Sn為{an}的前n項(xiàng)和,若Sn=126,則n=.
組卷:7227引用:58難度:0.7 -
7.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若a1=1,S6=4S3,則a4=.
組卷:1787引用:43難度:0.7 -
8.已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和.若a1,a3是方程x2-5x+4=0的兩個(gè)根,則S6=.
組卷:1804引用:70難度:0.7 -
9.若等比數(shù)列{an}滿足a2+a4=20,a3+a5=40,則公比q=;前n項(xiàng)和Sn=.
組卷:1941引用:37難度:0.7 -
10.設(shè)數(shù)列{an}是首項(xiàng)為1,公比為-2的等比數(shù)列,則a1+|a2|+a3+|a4|=.
組卷:933引用:29難度:0.5
三、解答題(共16小題)
-
29.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知2Sn=3n+3.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn},滿足anbn=log3an,求{bn}的前n項(xiàng)和Tn.組卷:11859引用:48難度:0.5 -
30.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am,則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.組卷:1771引用:31難度:0.5