試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2022-2023學(xué)年山東省青島五十八中高一(上)期末數(shù)學(xué)試卷

發(fā)布:2024/12/6 9:30:2

一、單項(xiàng)選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符號(hào)選項(xiàng)要求的,線上誠(chéng)信考試,請(qǐng)將選出的答案標(biāo)號(hào)(A、B、C、D)使用小程序提交.

  • 1.已知集合A={x|2x>4},B={x|lnx<1},則集合A∩B=( ?。?/h2>

    組卷:421引用:7難度:0.8
  • 2.記cos(-80°)=k,那么tan100°=(  )

    組卷:445引用:3難度:0.7
  • 3.使不等式0<
    1
    x
    <1成立的一個(gè)充分不必要條件是( ?。?/h2>

    組卷:760引用:8難度:0.7
  • 4.已知函數(shù)f(x)=2|x|,記
    a
    =
    f
    1
    4
    1
    3
    ,
    b
    =
    f
    lo
    g
    3
    7
    2
    ,
    c
    =
    f
    lo
    g
    1
    3
    5
    ,則a,b,c的大小關(guān)系為( ?。?/h2>

    組卷:171引用:2難度:0.6
  • 5.十六世紀(jì)中葉,英國(guó)數(shù)學(xué)家雷科德在《礪智石》一書(shū)中首先把“=”作為等號(hào)使用,后來(lái)英國(guó)數(shù)學(xué)家哈利奧特首次使用“>”和“<”符號(hào),并逐步被數(shù)學(xué)界接受,不等號(hào)的引入對(duì)不等式的發(fā)展影響深遠(yuǎn).若實(shí)數(shù)
    x
    +
    3
    y
    =
    3
    x
    1
    ,
    y
    1
    3
    ,則
    x
    x
    -
    1
    +
    3
    y
    3
    y
    -
    1
    的最小值為(  )

    組卷:263引用:5難度:0.7
  • 6.已知函數(shù)y=loga(x-1)+1(a>0且a≠1)恒過(guò)定點(diǎn)A(x0,y0),且滿足mx0+ny0=1,其中m,n是正實(shí)數(shù),則
    2
    m
    +
    1
    n
    的最小值( ?。?/h2>

    組卷:457引用:5難度:0.7
  • 7.我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖像來(lái)研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來(lái)分析函數(shù)的圖像的特征,函數(shù)
    y
    =
    2
    x
    -
    2
    -
    x
    x
    3
    -
    x
    的圖像大致是( ?。?/h2>

    組卷:222引用:7難度:0.6

四、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.線上誠(chéng)信考試,請(qǐng)將答案填寫(xiě)在答題卡相應(yīng)位置處,再拍照上傳.

  • 21.已知函數(shù)f(x)=x2+2mx-6在區(qū)間[-1,2]上是單調(diào)函數(shù).
    (1)求實(shí)數(shù)m的所有取值組成的集合A;
    (2)試寫(xiě)出f(x)在區(qū)間[-1,2]上的最大值g(m);
    (3)設(shè)h(x)=x+1,令F(m)=
    g
    m
    ,
    m
    A
    h
    m
    ,
    m
    ?
    RA
    ,若對(duì)任意
    m
    1
    m
    2
    [
    -
    7
    2
    ,
    a
    ]
    ,總有|F(m1)-F(m2)|≤a+3,求a的取值范圍.

    組卷:62引用:2難度:0.5
  • 菁優(yōu)網(wǎng)22.截至2022年12月12日,全國(guó)新型冠狀病毒的感染人數(shù)突破44200000人.疫情嚴(yán)峻,請(qǐng)同學(xué)們利用的數(shù)學(xué)模型解決生活中的實(shí)際問(wèn)題.
    【主題一】【科學(xué)抗疫,新藥研發(fā)】
    (1)我國(guó)某科研機(jī)構(gòu)新研制了一種治療新冠肺炎的注射性新藥,并已進(jìn)入二期臨床試驗(yàn)階段.已知這種新藥在注射停止后的血藥含量c(t)(單位:mg/L)隨著時(shí)間t(單位:h)的變化用指數(shù)模型
    c
    t
    =
    c
    0
    e
    -
    kt
    描述,假定某藥物的消除速率常數(shù)k=0.1(單位:h-1),剛注射這種新藥后的初始血藥含量c0=2000mg/L,且這種新藥在病人體內(nèi)的血藥含量不低于1000mg/L時(shí)才會(huì)對(duì)新冠肺炎起療效,現(xiàn)給某新冠病人注射了這種新藥,則該新藥對(duì)病人有療效的時(shí)長(zhǎng)大約為 _____(參考數(shù)據(jù):ln2≈0.693,ln3≈1.099)
    A.5.32hB.6.23hC.6.93hD.7.52h
    【主題二】【及時(shí)隔離,避免感染】
    (2)為了抗擊新冠,李滄區(qū)需要建造隔離房間.如圖,每個(gè)房間是長(zhǎng)方體,且有一面靠墻,底面積為48a平方米(a>0),側(cè)面長(zhǎng)為x米,且x不超過(guò)8,房高為4米.房屋正面造價(jià)400元/平方米,側(cè)面造價(jià)150元/平方米.如果不計(jì)房屋背面、屋頂和地面費(fèi)用,則側(cè)面長(zhǎng)為多少時(shí),總價(jià)最低.

    組卷:89引用:4難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正