2019-2020學年云南省保山九中高二(下)期末數(shù)學試卷(文科)
發(fā)布:2024/4/20 14:35:0
一、選擇題(共12小題,每小題5分,滿分60分)
-
1.設集合A={0,1,2,3},B={1,2,3,4},則集合A∩B為( ?。?/h2>
組卷:1引用:1難度:0.8 -
2.i是虛數(shù)單位,則
=( ?。?/h2>i1+i組卷:2引用:2難度:0.8 -
3.如圖是一個物體的三視圖,則此三視圖所描述物體的直觀圖是( ?。?/h2>
組卷:126引用:17難度:0.9 -
4.設變量x,y滿足約束條件
,則目標函數(shù)z=4x+2y的最大值為( ?。?/h2>x+y≤3x-y≥-1y≥1組卷:317引用:28難度:0.9 -
5.為了得到函數(shù)y=sin(2x-
)的圖象,只需把函數(shù)y=sin2x的圖象上所有的點( )π3組卷:7423引用:38難度:0.9 -
6.曲線y=-x3+3x2在點(1,2)處的切線方程為( ?。?/h2>
組卷:6引用:1難度:0.9 -
7.過橢圓
+x2a2=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( ?。?/h2>y2b2組卷:2372引用:114難度:0.9
三、解答題(共7小題,滿分70分)
-
22.平面直角坐標系中,直線l的參數(shù)方程
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0x=ty=3t
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A,B兩點,求|AB|.組卷:33引用:2難度:0.3 -
23.已知函數(shù)f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)當a=1時,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在區(qū)間(-∞,+∞)上恒成立,求實數(shù)a的取值范圍.組卷:15引用:2難度:0.5