2022-2023學年天津實驗中學高二(上)期末數(shù)學試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題:本大題共9小題,每小題4分,共36分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,如圖中第一行的1,3,6,10稱為三角形數(shù),第二行的1,4,9,16稱為正方形數(shù),則三角形數(shù)、正方形數(shù)所構成的數(shù)列的第5項分別為( )
組卷:63引用:1難度:0.7 -
2.已知函數(shù)f(x)=x2+2,則該函數(shù)在區(qū)間[1,3]上的平均變化率為( ?。?/h2>
組卷:622引用:5難度:0.9 -
3.準線方程為y=-2的拋物線的標準方程為( ?。?/h2>
組卷:110引用:5難度:0.7 -
4.在數(shù)列{an}中,
,a1=12(n≥2,n∈N+),則a2023=( ?。?/h2>an=1-1an-1組卷:347引用:8難度:0.7 -
5.在等比數(shù)列{an}中,已知a2=2,a4a6=28,則公比q=( ?。?/h2>
組卷:437引用:4難度:0.8 -
6.已知雙曲線
=1(a>0,b>0)的離心率為x2a2-y2b2,左、右焦點分別為F1,F(xiàn)2,以F1F2為直徑的圓與雙曲線右支的一個交點為P.若|PF2|=2,則該雙曲線的標準方程為( ?。?/h2>5組卷:162引用:2難度:0.7
三、解答題:本大題共3小題,共34分.解答應寫出文字說明,證明過程或演算步驟.
-
17.已知雙曲線
,拋物線y2=2px(p>0)的焦點與雙曲線的一個焦點相同,點P(x0,y0)為拋物線上一點.x2-y23=1
(1)求雙曲線的離心率和漸近線方程;
(2)求拋物線的方程和拋物線的準線方程;
(3)若點P到拋物線的焦點的距離是5,求x0的值.組卷:221引用:1難度:0.7 -
18.已知數(shù)列{an}是公比q>1的等比數(shù)列,前三項和為13,且a1,a2+2,a3恰好分別是等差數(shù)列{bn}的第一項,第三項,第五項.
(1)求{an}和{bn}的通項公式;
(2)已知k∈N*,數(shù)列{cn}滿足,求數(shù)列{cn}的前2n項和S2n.cn=1bnbn+2,n=2k-1anbn,n=2k組卷:426引用:1難度:0.6