試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2023-2024學(xué)年河南省鄭州四中九年級(上)第一次學(xué)習(xí)比賽數(shù)學(xué)試卷

發(fā)布:2024/9/12 8:0:9

一.選擇題(每小題3分,共30分)

  • 1.下列關(guān)于x的方程中,一定是一元二次方程的是( ?。?/h2>

    組卷:1368引用:31難度:0.9
  • 2.下列條件中,能判定平行四邊形是菱形的是( ?。?/h2>

    組卷:309引用:6難度:0.5
  • 3.要檢驗一個四邊形畫框是否為矩形,可行的測量方法是(  )

    組卷:1608引用:8難度:0.5
  • 4.已知關(guān)于x的一元二次方程x2+kx-2=0有一個根是-2,則另一個根是( ?。?/h2>

    組卷:458引用:11難度:0.7
  • 菁優(yōu)網(wǎng)5.如圖,四邊形ABCD的兩條對角線相交于點(diǎn)O,且互相平分.添加下列條件,仍不能判定四邊形ABCD為菱形的是(  )

    組卷:2984引用:34難度:0.5
  • 6.若方程x2+2x+m+1=0有兩個不相等的實數(shù)根,則m的值可以是( ?。?/h2>

    組卷:211引用:6難度:0.7
  • 7.根據(jù)下表:
    x -3 -2 -1 4 5 6
    x2-bx-5 13 5 -1 -1 5 13
    確定方程x2-bx-5=0的解的取值范圍是( ?。?/h2>

    組卷:818引用:22難度:0.6

三、解答題(共8小題,共75分)

  • 22.閱讀材料,解決問題.
    相傳古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上研究數(shù)學(xué)問題.他們在沙灘上畫點(diǎn)或用小石子來表示數(shù),比如,他們研究過1、3、6、10…,由于這些數(shù)可以用圖中所示的三角點(diǎn)陣表示,他們就將每個三角點(diǎn)陣中所有的點(diǎn)數(shù)和稱為三角數(shù).
    菁優(yōu)網(wǎng)
    則第n個三角數(shù)可以用1+2+3+…+(n-2)+(n-1)+n=
    n
    n
    +
    1
    2
    (n≥1且為整數(shù))來表示.
    (1)若三角數(shù)是55,則n=
    ;
    (2)把第n個三角點(diǎn)陣中各行的點(diǎn)數(shù)依次換為2,4,6,…,2n,…,請用含n的式子表示前n行所有點(diǎn)數(shù)的和;
    (3)在(2)中的三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和能為120嗎?如果能,求出n,如果不能,請說明理由.

    組卷:115引用:4難度:0.4
  • 23.綜合與實踐課上,老師讓同學(xué)們以“正方形的折疊”為主題開展數(shù)學(xué)活動.
    (1)操作判斷
    操作一:對折正方形紙片,使AD與BC重合,得到折痕EF,把紙片展平;
    操作二:在BE上選一點(diǎn)H,沿CH折疊,使點(diǎn)B落在EF上的點(diǎn)G處,得到折痕CH,把紙片展平;根據(jù)以上操作,直接寫出圖1中∠CHB的度數(shù):

    (2)拓展應(yīng)用
    小華在以上操作的基礎(chǔ)上,繼續(xù)探究,延長HG交AD于點(diǎn)M,連接CM交EF于點(diǎn)N(如圖2).判斷△MGN的形狀,并說明理由.
    (3)遷移探究
    如圖3,已知正方形ABCD的邊長為6cm,當(dāng)點(diǎn)H是邊AB的三等分點(diǎn)時,把△BCH沿CH翻折得△GCH,延長HG交AD于點(diǎn)M,請直接寫出AM的長.
    菁優(yōu)網(wǎng)

    組卷:774引用:3難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正