2022-2023學年黑龍江省齊齊哈爾八中高二(上)月考數(shù)學試卷(10月份)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.兩條平行直線3x-4y-2=0與3x-4y+3=0之間的距離是( ?。?/h2>
組卷:113引用:4難度:0.8 -
2.設x,y∈R,向量
=(x,1,1),a=(1,y,1),b=(2,-4,2),c⊥a,c∥b,則x+y=( ?。?/h2>c組卷:154引用:7難度:0.8 -
3.若直線x+ay-2=0與直線a2x+2y+1=0垂直,則a=( ?。?/h2>
組卷:103引用:2難度:0.7 -
4.Rt△ABC的兩條直角邊BC=3,AC=4,PC⊥平面ABC,PC=
,則點P到斜邊AB的距離是( ?。?/h2>95組卷:92引用:7難度:0.6 -
5.若直線x-y+1=0與圓(x-a)2+(y-1)2=4沒有公共點,則實數(shù)a的取值范圍是( ?。?/h2>
組卷:94引用:4難度:0.8 -
6.若直線l的斜率
,則直線l的傾斜角的取值范圍是( ?。?/h2>k∈[-1,33]組卷:387引用:13難度:0.8 -
7.圓x2+(y-1)2=1與圓(x-1)2+y2=1的公切線的條數(shù)是( ?。?/h2>
組卷:11引用:2難度:0.7
四、解答題:本題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
-
21.如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求二面角B-AC-E的正弦值;
(3)求點D到平面ACE的距離.組卷:461引用:12難度:0.1 -
22.在平面直角坐標系xOy中,過點P(0,1)且互相垂直的兩條直線分別與圓
O:x2+y2=4交于點A,B,與圓M:(x-2)2+(y-1)2=1交于點C,D.
(1)若|AB|=,求直線AB的一般方程;14
(2)若CD的中點為E,求△ABE面積的取值范圍.組卷:537引用:4難度:0.3