2023年內(nèi)蒙古包頭市三校聯(lián)考中考數(shù)學(xué)一模試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(每題3分,共36分)
-
1.下列各數(shù):-1.5,0,
,1.030030003…(每相鄰兩個(gè)3之間0的個(gè)數(shù)依次多1),13,16,其中無理數(shù)的個(gè)數(shù)是( ?。?/h2>π2組卷:279引用:1難度:0.7 -
2.截止2018年5月底,我國(guó)的外匯儲(chǔ)備約為31100億元,將31100億用科學(xué)記數(shù)法表示為( ?。?/h2>
組卷:308引用:4難度:0.8 -
3.為了了解某市參加中考的25000名學(xué)生的視力情況,抽查了2000名學(xué)生的視力進(jìn)行統(tǒng)計(jì)分析,下面四個(gè)判斷正確的是( ?。?/h2>
組卷:466引用:5難度:0.8 -
4.下列計(jì)算正確的是( ?。?/h2>
組卷:167引用:4難度:0.7 -
5.在函數(shù)
中,自變量x的取值范圍是( )y=x-32-x組卷:980引用:5難度:0.7 -
6.如圖,AB是⊙O的直徑,C、D是圓上的點(diǎn),若∠D=20°,則∠BAC的值是( ?。?br />?
組卷:156引用:1難度:0.7 -
7.方程(m-2)x2-
x+3-m=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍為( ?。?/h2>14組卷:324引用:7難度:0.9 -
8.如圖,已知?AOBC的頂點(diǎn)O(0,0),A(-1,2),點(diǎn)B在x軸正半軸上按以下步驟作圖:①以點(diǎn)O為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊OA,OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,大于
DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)F;③作射線OF,交邊AC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為( )12組卷:4340引用:34難度:0.5
三、解答題(共63分)
-
24.(1)問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:AD?BC=AP?BP;
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠CPD=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC=4BC時(shí),求t的值.組卷:749引用:4難度:0.3 -
25.如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時(shí)m的值;
(3)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說明理由.組卷:2234引用:15難度:0.1