2022-2023學(xué)年湖南省株洲二中高三(上)質(zhì)檢數(shù)學(xué)試卷(12月份)(A卷)
發(fā)布:2024/8/16 11:0:4
一、選擇題;本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.設(shè)集合A={x|-1≤x≤2},B={x|0≤x≤4},則A∩B=( )
組卷:231引用:32難度:0.9 -
2.若x為復(fù)數(shù),則方程x4=1的解是( )
組卷:122引用:2難度:0.9 -
3.等比數(shù)列{an}中,若a1+a2=1,a3+a4=9,那么公比q等于( ?。?/h2>
組卷:29引用:2難度:0.5 -
4.下列命題為真命題的是( )
組卷:9引用:1難度:0.6 -
5.已知函數(shù)
的部分圖象如圖所示,則f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)=( ?。?/h2>f(-π6)組卷:665引用:10難度:0.7 -
6.一圓臺(tái)的兩底面半徑分別為2,4,高為4則該圓臺(tái)外接球的表面積為( )
組卷:130引用:2難度:0.7 -
7.已知函數(shù)f(x)=x2-2m,g(x)=3lnx-x,若y=f(x)與y=g(x)在公共點(diǎn)處的切線相同,則m=( )
組卷:285引用:4難度:0.6
四、解答題;本題共6個(gè)小題,共70分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.
-
21.(1)已知圓經(jīng)過(guò)三點(diǎn)A(1,12),B(7,10),C(-9,2),求該圓的方程;
(2)若一個(gè)圓過(guò)點(diǎn)P(3,-1),且與圓C:x2+y2+2x-6y+5=0相切于點(diǎn)M(1,2),求此圓的方程.組卷:44引用:3難度:0.7 -
22.已知函數(shù)
(a,b∈R),f′(0)=f′(2)=1.f(x)=13x3-ax2+bx
(1)求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)若函數(shù)g(x)=f(x)-4x,x∈[-3,2],求g(x)的單調(diào)區(qū)間和最小值.組卷:58引用:9難度:0.3