2022-2023學(xué)年廣東省深圳實(shí)驗(yàn)學(xué)校高中部高一(下)期中數(shù)學(xué)試卷
發(fā)布:2024/5/13 8:0:8
一、單選題:本題共8小題,每小題5分,共40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.已知向量
=(1,2),a=(-1,m),若b⊥a,則m的值為( ?。?/h2>b組卷:189引用:8難度:0.9 -
2.復(fù)數(shù)
,則z=(1+3i)3(2+2i)2+3+i2-i的虛部是( ?。?/h2>z組卷:112引用:1難度:0.7 -
3.已知單位向量
,a滿(mǎn)足|b-a|=b,則cos<3,a+a>=( )b組卷:202引用:4難度:0.8 -
4.從正方體的8個(gè)頂點(diǎn)上任取4個(gè)頂點(diǎn),則這4個(gè)頂點(diǎn)構(gòu)成的幾何圖形不可能是( ?。?/h2>
組卷:109引用:1難度:0.5 -
5.在△ABC中,已知cos2A+cos2B-cos2C=1-2sinAsinB,則一定成立的是( ?。?/h2>
組卷:148引用:1難度:0.7 -
6.在△ABC中,
,若三角形有兩解,則x的取值范圍是( )a=x,b=3,B=60°組卷:211引用:1難度:0.7 -
7.過(guò)△ABC的重心G的直線l分別交線段AB、AC于點(diǎn)E、F,若
,則2λ+μ的最小值為( ?。?/h2>AE=λAB,AF=μAC組卷:201引用:1難度:0.6
四、解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟
-
21.正六棱臺(tái)玻璃容器的兩底面棱長(zhǎng)分別為7cm,31cm,高為32cm,如圖水平放置,盛有水深為12cm.
(1)求玻璃容器的體積;
(2)將一根長(zhǎng)度為40cm的攪棒l置入玻璃容器中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度.(容器厚度,攪棒粗細(xì)均忽略不計(jì))組卷:108引用:4難度:0.5 -
22.如圖1,某景區(qū)是一個(gè)以C為圓心,半徑為
的圓形區(qū)域,道路l1,l2成60°角,且均和景區(qū)邊界相切,現(xiàn)要修一條與景區(qū)相切的觀光木棧道AB,點(diǎn)A,B分別在l1和l2上,修建的木棧道AB與道路l1,l2圍成三角地塊OAB.(注:圓的切線長(zhǎng)性質(zhì):圓外一點(diǎn)引圓的兩條切線長(zhǎng)相等).3km
(1)若△OAB的面積,求木棧道AB長(zhǎng);S=103km2
(2)如圖2,若景區(qū)中心C與木棧道A段連線的∠CAB=α,求木棧道AB的最小值.組卷:54引用:2難度:0.5