2022年陜西省渭南市蒲城縣高考數(shù)學(xué)二模試卷(文科)
發(fā)布:2024/4/20 14:35:0
一、選擇題。本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
-
1.已知集合A={x|-2<x<2},B={x∈N|-1≤x<3},則A∩B=( )
組卷:408引用:3難度:0.9 -
2.已知iz=1+i,i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( )
組卷:98引用:1難度:0.8 -
3.已知向量
=(2,1),a=(2,-3),且kb+a與b-a平行,則實數(shù)k=( ?。?/h2>b組卷:385引用:1難度:0.7 -
4.已知等差數(shù)列{an}的前n項和為Sn,若a2=1,S9=18,則a8=( ?。?/h2>
組卷:402引用:1難度:0.9 -
5.某學(xué)生2021年共參加10次數(shù)學(xué)競賽模擬考試,成績分別記為x1,x2,x3,…,x10,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適( )
組卷:122引用:2難度:0.8 -
6.阿基米德不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的焦點在y軸上,且橢圓C的離心率為
,面積為20π,則橢圓C的標(biāo)準(zhǔn)方程為( ?。?/h2>35組卷:213引用:6難度:0.7 -
7.如圖,一個圓柱和一個圓錐的底面直徑和它們的高都與一個球的直徑2R相等,則下列結(jié)論正確的是( )
組卷:126引用:2難度:0.6
選考題。共10分。請考生在第22、23兩題中任選一題作答,并用2B鉛筆在答題卡上把所選的題號涂黑。注意:所做題目必須與所涂題號一致.。如果多做,則按所做的第一題計分。[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
-
22.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=x=2cosαy=2sinα.2
(1)求直線l的直角坐標(biāo)方程和曲線C的極坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,點P在曲線C上運(yùn)動,求△PAB面積的最大值.組卷:119引用:1難度:0.6
[選修4-5:不等式選講](10分)
-
23.已知函數(shù)f(x)=|x+1|-|x-a2|.
(1)當(dāng)a=1時,求不等式f(x)<1的解集;
(2)若關(guān)于x的不等式f(x)≤3a-1恒成立,求實數(shù)a的取值范圍.組卷:46引用:1難度:0.6