蘇科新版八年級(jí)數(shù)學(xué)上冊(cè)《第1章 全等三角形》2016年單元測(cè)試卷(4)
發(fā)布:2024/4/20 14:35:0
一、選擇題(共8小題,每小題2分,滿分16分)
-
1.如圖,OA=OB,OC=OD,∠O=50°,∠D=35°,則∠AEC等于( )
組卷:835引用:109難度:0.9 -
2.如圖,小強(qiáng)利用全等三角形的知識(shí)測(cè)量池塘兩端M、N的距離,如果△PQO≌△NMO,則只需測(cè)出其長(zhǎng)度的線段是( )
組卷:2428引用:75難度:0.9 -
3.已知△A1B1C1,△A2B2C2的周長(zhǎng)相等,現(xiàn)有兩個(gè)判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對(duì)于上述的兩個(gè)判斷,下列說法正確的是( ?。?/h2>組卷:6198引用:78難度:0.4 -
4.如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( ?。?/h2>
組卷:2300引用:119難度:0.9 -
5.如圖,已知∠1=∠2,AC=AD,增加下列條件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的條件有( )
組卷:3305引用:173難度:0.7 -
6.如圖,△ABD與△ACE均為正三角形,且AB<AC,則BE與CD之間的大小關(guān)系是( ?。?/h2>
組卷:372引用:20難度:0.9 -
7.如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點(diǎn),且BD交AC于點(diǎn)D,CE交AB于點(diǎn)E.某同學(xué)分析圖形后得出以下結(jié)論:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述結(jié)論一定正確的是( ?。?/h2>
組卷:714引用:58難度:0.9 -
8.如圖所示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B,C,E在同一條直線上,AE與BD與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC,F(xiàn)G,其中正確結(jié)論的個(gè)數(shù)是( ?。?br />①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.
組卷:1047引用:40難度:0.5
三、解答題(共64分)
-
24.兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連接DC.
(1)請(qǐng)找出圖2中與△ABE全等的三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)證明:DC⊥BE.組卷:1228引用:54難度:0.5 -
25.如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系,請(qǐng)證明你的猜想;
(2)將△EFP沿直線l向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP,BQ.你認(rèn)為(1)中所猜想的BQ與AP的數(shù)量關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說明理由;
(3)若AC=BC=4,設(shè)△EFP平移的距離為x,當(dāng)0≤x≤8時(shí),△EFP與△ABC重疊部分的面積為S,請(qǐng)寫出S與x之間的函數(shù)關(guān)系式,并求出最大值.組卷:588引用:60難度:0.3