2021-2022學(xué)年浙江省嘉興市高二(下)期末數(shù)學(xué)試卷
發(fā)布:2025/1/7 12:30:2
一、選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的)
-
1.已知集合A={x|x2-3x<0},B={x|x-2>0},則A∩B=( ?。?/h2>
組卷:102引用:1難度:0.7 -
2.已知直線l、m和平面α.若m?α,l?α,則“l(fā)∥m”是“l(fā)∥α”的( ?。?/h2>
組卷:253引用:3難度:0.7 -
3.已知平面向量
,a=(1,0),若b=(1,2),則實數(shù)λ=( )(a+λb)⊥a組卷:127引用:6難度:0.7 -
4.函數(shù)
的部分圖象可能是( ?。?/h2>f(x)=x3+x3x+3-x組卷:268引用:7難度:0.9 -
5.將A,B,C,D,E五個字母排成一排,且A,E均不排在兩端,則不同的排法共有( ?。?/h2>
組卷:116引用:3難度:0.8 -
6.設(shè)函數(shù)
若函數(shù)y=f(x)+a在R上有4個不同的零點,則實數(shù)a的取值范圍是( ?。?/h2>f(x)=ax2+ax+1,x≤0,|lnx|,x>0,組卷:323引用:2難度:0.5 -
7.下列說法錯誤的是( ?。?/h2>
組卷:21引用:1難度:0.8
四、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
-
21.如圖,已知橢圓C1:
+x2a2=1(a>b>0)經(jīng)過點(y2b2,2),離心率為22,點M(0,2b),以O(shè)M為直徑作圓C2,過點M作相互垂直的兩條直線,分別交橢圓C1與圓C2于點A、B和點N.32
(1)求橢圓C1的標準方程;
(2)當△NAB的面積最大時,求直線AB的方程.組卷:88引用:1難度:0.3 -
22.已知函數(shù)
.f(x)=lnx-a2x2+1(a∈R)
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)f(x)有兩個不同的零點x1,x2(x1<x2),
(?。┣笞C;0<a<e(e=2.71828?為自然對數(shù)的底數(shù));
(ⅱ)若x1,x2滿足,求a的最大值.|lnx1-lnx2|≥ln22組卷:162引用:2難度:0.3