2008年全國(guó)初中數(shù)學(xué)競(jìng)賽(浙江賽區(qū))復(fù)賽試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(共6小題,每小題5分,滿(mǎn)分30分)
-
1.一列“動(dòng)車(chē)組”高速列車(chē)和一列普通列車(chē)的車(chē)身長(zhǎng)分別為80米與100米,它們相向行駛在平行的軌道上,若坐在高速列車(chē)上的旅客看見(jiàn)普通列車(chē)駛過(guò)窗口的時(shí)間是5秒,則坐在普通列車(chē)上的旅客看見(jiàn)高速列車(chē)駛過(guò)窗口的時(shí)間是( )
組卷:2556引用:11難度:0.9 -
2.將一張邊長(zhǎng)分別為a,b(a>b)的矩形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,則折痕的長(zhǎng)為( ?。?/h2>
組卷:1114引用:7難度:0.9 -
3.如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,黑、白兩個(gè)甲殼蟲(chóng)同時(shí)從A點(diǎn)出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲(chóng)爬行的路線(xiàn)是:AA1?A1D1?D1C1?C1C?CB?BA?AA1?A1D1…,
白甲殼蟲(chóng)爬行的路線(xiàn)是:AB?BB1?B1C1?C1D1?D1A1?A1A?AB?BB1…,
那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2008條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是( )組卷:527引用:6難度:0.7 -
4.設(shè)m,n是正整數(shù),滿(mǎn)足m+n>mn,給出以下四個(gè)結(jié)論:①m,n都不等于1;②m,n都不等于2;③m,n都大于1;④m,n至少有一個(gè)等于1.其中正確的結(jié)論是( )
組卷:321引用:2難度:0.9 -
5.小明按如圖所示設(shè)計(jì)樹(shù)形圖,設(shè)計(jì)規(guī)則如下:第一層是一條與水平線(xiàn)垂直的線(xiàn)段,長(zhǎng)度為1;第二層在第一層線(xiàn)段的前端作兩條與該線(xiàn)段均成120°的線(xiàn)段,長(zhǎng)度為其一半;第三層按第二層的方法,在每一條線(xiàn)段的前端生成兩條線(xiàn)段;重復(fù)前面的作法作到第10層.則樹(shù)形圖第10層的最高點(diǎn)到水平線(xiàn)的距離為( ?。?BR>
組卷:569引用:5難度:0.5
三、解答題(共4小題,滿(mǎn)分54分)
-
15.設(shè)二次函數(shù)y=ax2+bx+c(a>0,c>1),當(dāng)x=c時(shí),y=0;當(dāng)0<x<c時(shí),y>0.
(1)請(qǐng)比較ac和1的大小,并說(shuō)明理由;
(2)當(dāng)x>0時(shí),求證:.ax+2+bx+1+cx>0組卷:1029引用:5難度:0.5 -
16.有7個(gè)人進(jìn)行某項(xiàng)目的循環(huán)比賽,每?jī)蓚€(gè)人恰好比賽一場(chǎng),且沒(méi)有平局.如果其中有3個(gè)人X、Y、Z,比賽結(jié)果為X勝Y,Y勝Z,Z勝X,那么我們稱(chēng)X、Y、Z構(gòu)成一個(gè)“圈”.求這7個(gè)人的比賽中,“圈”的數(shù)目的最大值.
組卷:86引用:1難度:0.2