2022年山東省青島市膠州六中中考數(shù)學(xué)三模試卷
發(fā)布:2024/10/27 17:0:31
一、選擇題:本大題共8小題
-
1.-5的絕對值是( )
組卷:282引用:328難度:0.9 -
2.下列品牌的標(biāo)識(shí)中,是軸對稱圖形但不是中心對稱圖形的是( ?。?/h2>
組卷:115引用:3難度:0.9 -
3.如圖所示的正六棱柱的主視圖是( ?。?/h2>
組卷:104引用:7難度:0.8 -
4.月球與地球之間的平均距離約為38.4萬公里.38.4萬用科學(xué)記數(shù)法表示為( )
組卷:55引用:1難度:0.6 -
5.在平面直角坐標(biāo)系中,將線段AB平移后得到線段A′B′,點(diǎn)A(2,2)的對應(yīng)點(diǎn)A′的坐標(biāo)為(-2,-2).則點(diǎn)B(-1,1)的對應(yīng)點(diǎn)B′的坐標(biāo)為( ?。?/h2>
組卷:168引用:2難度:0.8 -
6.下列運(yùn)算中,正確的是( ?。?/h2>
組卷:1326引用:30難度:0.5 -
7.如圖,在Rt△ABC中,∠ABC=90°,AB=4
,BC=4,以AB的中點(diǎn)O為圓心,OA的長為半徑作圓,交AC于點(diǎn)D,則圖中陰影部分的面積為( ?。?/h2>3組卷:480引用:2難度:0.5 -
8.如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊的中點(diǎn),過D作DE⊥BC于點(diǎn)E,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),AP與CD相交于點(diǎn)Q.當(dāng)AP+PD的值最小時(shí),AQ與PQ之間的數(shù)量關(guān)系是( ?。?/h2>
組卷:1355引用:10難度:0.7
四、解答題:本大題共9小題.
-
23.問題的提出:n個(gè)平面最多可以把空間分割成多少個(gè)部分?
問題的轉(zhuǎn)化:由n上面問題比較復(fù)雜,所以我們先來研究跟它類似的一個(gè)較簡單的問題:
n條直線最多可以把平面分割成多少個(gè)部分?
如圖1,很明顯,平面中畫出1條直線時(shí),會(huì)得到1+1=2個(gè)部分;所以,1條直線最多可以把平面分割成2個(gè)部分;
如圖2,平面中畫出第2條直線時(shí),新增的一條直線與已知的1條直線最多有1個(gè)交點(diǎn),這個(gè)交點(diǎn)會(huì)把新增的這條直線分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2條直線最多可以把平面分割成4個(gè)部分;
如圖3,平面中畫出第3條直線時(shí),新增的一條直線與已知的2條直線最多有2個(gè)交點(diǎn),這2個(gè)交點(diǎn)會(huì)把新增的這條直線分成3部分,從而多出3個(gè)部分,即總共會(huì)得到1+1+2+3=7個(gè)部分,所以,3條直線最多可以把平面分割成7個(gè)部分;
平面中畫出第4條直線時(shí),新增的一條直線與已知的3條直線最多有3個(gè)交點(diǎn),這3個(gè)交點(diǎn)會(huì)把新增的這條直線分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+3+4=11個(gè)部分,所以,4條直線最多可以把平面分割成11個(gè)部分;…
①請你仿照前面的推導(dǎo)過程,寫出“5條直線最多可以把平面分割成多少個(gè)部分”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
②根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成個(gè)部分.
問題的解決:借助前面的研究,我們繼續(xù)開頭的問題;n個(gè)平面最多可以把空間分割成多少個(gè)部分?
首先,很明顯,空間中畫出1個(gè)平面時(shí),會(huì)得到1+1=2個(gè)部分;所以,1個(gè)平面最多可以把空間分割成2個(gè)部分;
空間中有2個(gè)平面時(shí),新增的一個(gè)平面與已知的1個(gè)平面最多有1條交線,這1條交線會(huì)把新增的這個(gè)平面最多分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2個(gè)平面最多可以把空間分割成4個(gè)部分;
空間中有3個(gè)平面時(shí),新增的一個(gè)平面與已知的2個(gè)平面最多有2條交線,這2條交線會(huì)把新增的這個(gè)平面最多分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+4=8個(gè)部分,所以,3個(gè)平面最多可以把空間分割成8個(gè)部分;
空間中有4個(gè)平面時(shí),新增的一個(gè)平面與已知的3個(gè)平面最多有3條交線,這3條交線會(huì)把新增的這個(gè)平面最多分成7部分,從而多出7個(gè)部分,即總共會(huì)得到1+1+2+4+7=15個(gè)部分,所以,4個(gè)平面最多可以把空間分割成15個(gè)部分;
空間中有5個(gè)平面時(shí),新增的一個(gè)平面與已知的4個(gè)平面最多有4條交線,這4條交線會(huì)把新增的這個(gè)平面最多分成11部分,而從多出11個(gè)部分,即總共會(huì)得到1+1+2+4+7+11=26個(gè)部分,所以,5個(gè)平面最多可以把空間分割成26個(gè)部分;…
③請你仿照前面的推導(dǎo)過程,寫出“6個(gè)平面最多可以把空間分割成多少個(gè)部分?”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
④根據(jù)遞推規(guī)律填寫結(jié)果:10個(gè)平面最多可以把空間分割成個(gè)部分;
⑤設(shè)n個(gè)平面最多可以把空間分割成Sn個(gè)部分,設(shè)n-1個(gè)平面最多可以把空間分割成Sn-1個(gè)部分,前面的遞推規(guī)律可以用Sn-1和n的代數(shù)式表示Sn;這個(gè)等式是Sn=.組卷:166引用:2難度:0.1 -
24.已知:線段EF和矩形ABCD如圖①擺放(點(diǎn)E與點(diǎn)B重合),點(diǎn)F在邊BC上EF=1cm,AB=4cm,BC=8cm.如圖②.EF從圖①的位置出發(fā),沿BC方向運(yùn)動(dòng),速度為1cm/s;動(dòng)點(diǎn)P同時(shí)從點(diǎn)D出發(fā),沿DA方向運(yùn)動(dòng),速度為1cm/s.點(diǎn)M為AB的中點(diǎn),連接PM,ME,DF,PM與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為(s)(0<1≤7).解答下列問題:
(1)當(dāng)PM⊥AC時(shí),求r的值;
(2)設(shè)五邊形PMEFD的面積為S(cm2),求S與t的關(guān)系式;
(3)當(dāng)ME∥AC時(shí),求線段AQ的長;
(4)當(dāng)t為何值時(shí),五邊形DAMEF的周長最小,最小是多少?直接寫出答案即可)組卷:133引用:1難度:0.1