2022-2023學(xué)年安徽省合肥市六校聯(lián)盟高一(下)期中數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單選題(本大題共8小題,共40.0分.在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))
-
1.已知復(fù)數(shù)z=a+i(a∈R),則下面結(jié)論正確的是( )
組卷:251引用:5難度:0.8 -
2.設(shè)
,a為非零向量,且滿足b,則|a-b|=|a|+|b|與a的關(guān)系是( ?。?/h2>b組卷:73引用:1難度:0.8 -
3.已知非零向量
滿足|a,b|=4|b|,且a⊥(a),則2a+b的夾角為( )a與b組卷:6996引用:63難度:0.9 -
4.等邊△ABC的邊長為2,則
在AB上的投影向量為( ?。?/h2>BC組卷:70引用:1難度:0.8 -
5.已知i是虛數(shù)單位,i-1是關(guān)于x的方程x2+px+q=0(p,q∈R)的一個(gè)根,則p+q=( )
組卷:180引用:5難度:0.7 -
6.如圖所示,在正方體ABCD-A1B1C1D1中,O為DB的中點(diǎn),直線A1C交平面C1BD于點(diǎn)M,則下列結(jié)論錯(cuò)誤的是( )
組卷:398引用:1難度:0.5 -
7.已知圓臺(tái)上底面半徑為1,下底面半徑為3,球與圓臺(tái)的兩個(gè)底面和側(cè)面均相切,則該圓臺(tái)的側(cè)面積與球的表面積之比為( ?。?/h2>
組卷:233引用:5難度:0.6
四、解答題(本大題共6小題,共70.0分.解答應(yīng)寫出文字說明,證明過程或演算步驟)
-
21.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=(3c-b)cosA.
(1)求sinA;
(2)若a=2,且△ABC的面積為2,求b+c的值.2組卷:160引用:11難度:0.5 -
22.在△ABC中,設(shè)角A,B,C的對邊長分別為a,b,c,已知
.sinA-sinBsinC=a-ca+b
(1)求角B的值;
(2)若△ABC為銳角三角形,且c=2,求△ABC的面積S的取值范圍.組卷:917引用:16難度:0.6