2017年第十三屆小學(xué)“新希望杯”全國(guó)數(shù)學(xué)邀請(qǐng)賽武漢賽區(qū)決賽試卷(六年級(jí)B卷)
發(fā)布:2024/11/2 8:30:2
一、選擇題(每小題4分,共24分)
-
1.若六年級(jí)一班的及格率是95%,則不及格人數(shù)與總?cè)藬?shù)的比是( ?。?/h2>
組卷:26引用:1難度:0.9 -
2.滬昆高鐵最后一段貴陽(yáng)至昆明于2016年12月28日開(kāi)通運(yùn)營(yíng),這對(duì)我國(guó)“一帶一路”戰(zhàn)略的實(shí)施和區(qū)域經(jīng)濟(jì)發(fā)展都有著重大意義,G1379次高鐵7:42從上海虹橋站出發(fā),當(dāng)天20:29到達(dá)昆明南站,全程共1569千米.途中站點(diǎn)共計(jì)停車1小時(shí)29分鐘,扣除停車時(shí)間,G1379次高鐵的平均速度為( )千米/時(shí).(結(jié)果保留整數(shù))
組卷:36引用:1難度:0.9 -
3.按照如圖所示的規(guī)律,圖6中小三角形共有( ?。﹤€(gè).
組卷:42引用:1難度:0.9 -
4.將1千克甲種酒精與2千克濃度為20%的乙種酒精混合后,濃度變?yōu)?4%,甲種酒精的濃度為( ?。?/h2>
組卷:224引用:1難度:0.9 -
5.《“楓葉新希望杯”全國(guó)數(shù)學(xué)大賽培訓(xùn)教程》的正文共199頁(yè),頁(yè)碼是從1到199的連續(xù)自然數(shù),這本書(shū)正文的頁(yè)碼共有( ?。﹤€(gè)數(shù)碼“1”.
組卷:136引用:1難度:0.7 -
6.水池有甲、乙兩根出水管,單獨(dú)打開(kāi)甲進(jìn)水管8小時(shí)可將滿水池排空,單獨(dú)打開(kāi)乙出水管6小時(shí)可將滿水池排空.如果按甲、乙、甲、…的順序輪流打開(kāi)1小時(shí),將滿水池排空需( ?。┬r(shí).
組卷:116引用:1難度:0.9
三、解答題(寫(xiě)出必要的解題過(guò)程,共46分)
-
19.從1,2,3,…,90這90個(gè)數(shù)中任意選取n個(gè)數(shù).
(1)若選取的n個(gè)數(shù)中,必定有兩個(gè)數(shù)的和是91,求n的最小值;
(2)當(dāng)n=14時(shí),選取的數(shù)中是否一定存在4個(gè)數(shù)a、b、c、d,使得(a-b)×(c-d)是91的倍數(shù),請(qǐng)說(shuō)明理由.組卷:30引用:1難度:0.1 -
20.已知n號(hào)小正方體的六個(gè)面都標(biāo)有數(shù)字n,在圖1的基礎(chǔ)上,將2號(hào)小正方體與1號(hào)小正方體相鄰堆積,得到圖2
;再將3號(hào)小正方體與2號(hào)小正方體相鄰堆積,得到圖3;…按這樣的方式堆積成圖5所示的大長(zhǎng)方體.
(1)若底面為第1層,那么圖5中第3層12個(gè)小正方體的編號(hào)(共12個(gè))之和是多少?
(2)在圖5的基礎(chǔ)上拿掉一些小正方體,得到如圖6所示的立體圖形,該立體圖形表面(含底面)上的所有數(shù)字之和是多少?組卷:48引用:3難度:0.5