2007年第十二屆“華羅庚金杯”少年數(shù)學(xué)邀請賽決賽試卷(小學(xué)組第2試)
發(fā)布:2024/4/20 14:35:0
一、填空題(共3小題,每小題0分,滿分0分)
-
1.設(shè)
=147340,其中a、b、c、d都是非零自然數(shù),則a+b+c+d=.1a+1b+1c+1d組卷:139引用:1難度:0.7 -
2.如圖是半個圓柱的表面展開圖,由兩個半圓和兩個長方形組成,總面積是a,圓柱底面半徑是r.用a、r和圓周率π所表示的這個半圓柱的體積的式子是.
組卷:62引用:1難度:0.9
二、解答題(共3小題,滿分0分)
-
5.若干支球隊分成4組,每組至少兩隊,各組進(jìn)行循環(huán)賽(組內(nèi)每兩隊都要比賽一場),共比賽了66場.問:共有多少支球隊?(寫出所有可能的參賽隊數(shù))
組卷:100引用:1難度:0.3 -
6.如圖的圓周上放置有3000枚棋子,按順時針依次編號為1,2,3,…,2999,3000.首先取走3號棋子,然后按順時針方向,每隔2枚棋子就取走1枚棋子,…,直到1號棋子被取走為止.問:此時,
(1)圓周上還有多少枚棋子?
(2)在圓周上剩下的棋子中,從編號最小一枚棋子開始數(shù),第181枚棋子的編號是多少?組卷:124引用:1難度:0.1