2023年浙江省Z20名校聯(lián)盟(名校新高考研究聯(lián)盟)高考數(shù)學第二次聯(lián)考試卷
發(fā)布:2024/12/7 11:0:2
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知集合A={x|2x+8>0},B={x|3x<9},則A∩B=( ?。?/h2>
組卷:110引用:3難度:0.8 -
2.若1+2i=iz(i為虛數(shù)單位),則|z|=( ?。?/h2>
組卷:151引用:2難度:0.8 -
3.已知一組樣本數(shù)據(jù)x1,x2,…,x10的平均數(shù)為a,由這組數(shù)據(jù)得到另一組新的樣本數(shù)據(jù)y1,y2,…,y10,其中yi=xi-2(i=1,2,…,10),則( )
組卷:154引用:4難度:0.8 -
4.已知多項式(x-2)5+(x-1)6=a0+a1x+a2x2+…+a5x5+a6x6,則a1=( ?。?/h2>
組卷:452引用:4難度:0.8 -
5.已知△ABC是邊長為1的正三角形,
=2BD,DC+AB=2AC,則AE=( )AE?AD組卷:179引用:7難度:0.7 -
6.已知正方體ABCD-A1B1C1D1的棱長為1,P是線段B1D1上的動點,則三棱錐P-A1BD的體積為( ?。?/h2>
組卷:142引用:3難度:0.7 -
7.已知直角△ABC的直角頂點A在圓D:(x-3)2+(y-2)2=1上,若點B(-1,0),C(a,0),則a的取值范圍為( ?。?/h2>
組卷:156引用:3難度:0.5
四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.
-
21.已知雙曲線E的頂點為A(-1,0),B(1,0),過右焦點F作其中一條漸近線的平行線,與另一條漸近線交于點G,且
.點P為x軸正半軸上異于點B的任意點,過點P的直線l交雙曲線于C,D兩點,直線AC與直線BD交于點H.S△OFG=324
(1)求雙曲線E的標準方程;
(2)求證:為定值.OP?OH組卷:397引用:3難度:0.5 -
22.已知λ為正實數(shù),函數(shù)f(x)=ln(λx+1)-λx+
(x>0).x22
(1)若f(x)>0恒成立,求λ的取值范圍;
(2)求證:2ln(n+1)-<53(n∑i=1-2i)<2ln(n+1)(i=1,2,3,…).1i2組卷:154引用:3難度:0.3