2023年寧夏六盤山高級中學高考數(shù)學一模試卷(理科)
發(fā)布:2024/12/21 4:30:2
一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知集合A={x∈Z|x2-2x-3<0},B={-2,-1,0,1},則A∪B=( )
A.{-2,-1} B.{-2,-1,0,1,2} C.{-2,-1,0} D.{0,1} 組卷:125引用:2難度:0.9 -
2.設復數(shù)z滿足(1+i)z=|3+i|,則復數(shù)z的虛部是( ?。?/h2>
A.-5 B.5 C. -102D. 102組卷:223引用:5難度:0.8 -
3.已知平面向量
=(1,3),|a|=b,且2,則|a-b|=10=( )(2a+b)?(a-b)A.1 B.14 C.17 D. 10組卷:237引用:1難度:0.7 -
4.農(nóng)歷是我國古代通行歷法,被譽為“世界上最突出和最優(yōu)秀的智慧結晶”.它以月相變化周期為依據(jù),每一次月相朔望變化為一個月,即“朔望月”,約為29.5306天.由于歷法精度的需要,農(nóng)歷設置“閏月”,即按照一定的規(guī)律每過若干年增加若干月份,來修正因為天數(shù)的不完美造成的誤差,以使平均歷年與回歸年相適應:設數(shù)列{an}滿足
,a1=1b1,a2=1b1+1b2,…,其中bn均為正整數(shù):b1=2,b2=1,b3=2,b4=1,b5=1,b6=16,…,那么第n級修正是“平均一年閏an個月”.已知我國農(nóng)歷為“19年共閏7個月”,則它是( ?。?/h2>a3=1b1+1b2+1b3A.第6級修正 B.第5級修正 C.第4級修正 D.第3級修正 組卷:198引用:2難度:0.5 -
5.設拋物線C:x2=-12y的焦點為F,點P在C上,Q(0,-9),若|PF|=|QF|,則|PQ|=( ?。?/h2>
A.6 2B.5 2C.2 6D.4 2組卷:44引用:1難度:0.6 -
6.執(zhí)行如圖所示的程序框圖,如果輸入的正整數(shù)n=6,則輸出的值是( ?。?/h2>
A.5 B.7 C.8 D.13 組卷:59引用:1難度:0.9 -
7.等比數(shù)列{an}滿足a2+8a5=0,設數(shù)列{
}的前n項和為Sn,則1an=( ?。?/h2>S5S2A.-11 B.-8 C.5 D.11 組卷:286引用:7難度:0.7
(二)選考題:共10分.請考生在第22、23題中選定一題作答,并用2B鉛筆在答題卡上將所選題目對應的題號方框涂黑.按所涂題號進行評分,不涂、多涂均按所答第一題評分;多答按所答第一題評分.
-
22.在直角坐標系xOy中,曲線C的參數(shù)方程為
(α為參數(shù),x=1cosα,y=3sinαcosα,),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為α≠kπ+π2.ρcos(θ+π3)=1
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)已知點P(2,0),若直線l與曲線C交于A,B兩點,求的值.|1|PA|-1|PB||組卷:303引用:12難度:0.5 -
23.已知函數(shù)f(x)=|x+a|+2|x-1|.
(1)當a=1時,求f(x)的最小值;
(2)若a>0,b>0時,對任意x∈[1,2],使得不等式f(x)>x2-b+1恒成立,證明:(a+)2+(b+12)2>2.12組卷:43引用:13難度:0.6