大綱版高三(上)高考題單元試卷:第2章 導(dǎo)數(shù)(03)
發(fā)布:2024/12/9 20:0:1
一、選擇題(共10小題)
-
1.已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯(cuò)誤的是( ?。?/h2>
A.?x0∈R,f(x0)=0 B.函數(shù)y=f(x)的圖象是中心對(duì)稱圖形 C.若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)單調(diào)遞減 D.若x0是f(x)的極值點(diǎn),則f′(x0)=0 組卷:2634引用:62難度:0.7 -
2.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是( )
A.[ )-32e,1B.[ )-32e,34C.[ )32e,34D.[ )32e,1組卷:11004引用:89難度:0.5 -
3.設(shè)函數(shù)f(x)的定義域?yàn)镽,x0(x0≠0)是f(x)的極大值點(diǎn),以下結(jié)論一定正確的是( ?。?/h2>
A.?x∈R,f(x)≤f(x0) B.-x0是f(-x)的極小值點(diǎn) C.-x0是-f(x)的極小值點(diǎn) D.-x0是-f(-x)的極小值點(diǎn) 組卷:2099引用:60難度:0.7 -
4.已知函數(shù)y=x3-3x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),則c=( ?。?/h2>
A.-2或2 B.-9或3 C.-1或1 D.-3或1 組卷:3267引用:80難度:0.9 -
5.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則實(shí)數(shù)a的取值范圍是( ?。?/h2>
A.(1,+∞) B.(2,+∞) C.(-∞,-1) D.(-∞,-2) 組卷:4937引用:99難度:0.7 -
6.已知函數(shù)f(x)=cosxsin2x,下列結(jié)論中不正確的是( )
A.y=f(x)的圖象關(guān)于(π,0)中心對(duì)稱 B.y=f(x)的圖象關(guān)于x= 對(duì)稱π2C.f(x)的最大值為 32D.f(x)既是奇函數(shù),又是周期函數(shù) 組卷:1797引用:48難度:0.7 -
7.若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1,x2,且x1<x2,f(x1)=x1,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)是( )
A.3 B.4 C.5 D.6 組卷:4280引用:46難度:0.7 -
8.已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( ?。?/h2>
A.3 B.4 C.5 D.6 組卷:3741引用:42難度:0.5 -
9.已知a為常數(shù),函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)( ?。?/h2>
A. f(x1)>0,f(x2)>-12B. f(x1)<0,f(x2)<-12C. f(x1)>0,f(x2)<-12D. f(x1)<0,f(x2)>-12組卷:3395引用:51難度:0.7 -
10.設(shè)函數(shù)f(x)滿足x2f′(x)+2xf(x)=
,f(2)=exx,則x>0時(shí),f(x)( ?。?/h2>e28A.有極大值,無(wú)極小值 B.有極小值,無(wú)極大值 C.既有極大值又有極小值 D.既無(wú)極大值也無(wú)極小值 組卷:5544引用:46難度:0.7
三、解答題(共19小題)
-
29.已知函數(shù)f(x)=x-1+
(a∈R,e為自然對(duì)數(shù)的底數(shù)).aex
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1的值時(shí),若直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.組卷:1590引用:55難度:0.1 -
30.已知函數(shù)f(x)=x2e-x
(Ⅰ)求f(x)的極小值和極大值;
(Ⅱ)當(dāng)曲線y=f(x)的切線l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.組卷:4645引用:20難度:0.1