2022-2023學(xué)年重慶市長壽中學(xué)高二(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一.單選題:本小題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,答案請(qǐng)涂寫在機(jī)讀卡上
-
1.已知直線l過A(-1,1)、B(1,3)兩點(diǎn),則直線l的傾斜角的大小為( ?。?/h2>
組卷:199引用:8難度:0.8 -
2.已知圓
和圓C1:(x-2)2+(y-3)2=1,則圓C1與圓C2的位置關(guān)系為( )C2:(x-3)2+(y-4)2=16組卷:180引用:2難度:0.8 -
3.三棱柱ABC-DEF中,G為棱AD的中點(diǎn),若
,BA=a,BC=b,則BD=c=( ?。?/h2>CG組卷:1388引用:30難度:0.7 -
4.雙曲線C:
=1上的點(diǎn)P到上焦點(diǎn)的距離為12,則P到下焦點(diǎn)的距離為( ?。?/h2>y225-x239組卷:468引用:10難度:0.8 -
5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=16,S6=8,則S12=( ?。?/h2>
組卷:382引用:5難度:0.7 -
6.已知點(diǎn)P是圓C:x2+y2-2x-4y+3=0的動(dòng)點(diǎn),直線l:x-y-3=0上存在兩點(diǎn)A,B,使得∠APB≥
恒成立,則線段AB長度的最小值是( ?。?/h2>π2組卷:330引用:7難度:0.5 -
7.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)是F,直線l與拋物線C相交于P,Q兩點(diǎn),且
,線段PQ的中點(diǎn)A到拋物線C的準(zhǔn)線的距離為d,則∠PFQ=2π3的最小值為( ?。?/h2>(|PQ|d)2組卷:428引用:7難度:0.5
四.解答題(本大題共6個(gè)小題,共70分.解答應(yīng)寫出必要的文字說明、證明
-
21.拋物線C:y2=2px(p>0),拋物線的焦點(diǎn)是雙曲線x2-2y2=1的右頂點(diǎn),過點(diǎn)Q(1,3)作直線與C交于M,N兩點(diǎn).
(1)求C的方程.
(2)若C的一條弦ST經(jīng)過C的焦點(diǎn),且直線ST與直線MN平行,試問是否存在常數(shù)λ,使得|QM|?|QN|=λ|SF|?|TF|成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.組卷:64引用:3難度:0.4 -
22.已知點(diǎn)A(0,2)與B(0,-2),動(dòng)點(diǎn)M(x,y)滿足直線AM,BM的斜率之積為
,則點(diǎn)M的軌跡為曲線C.-12
(1)求曲線C的方程;
(2)若點(diǎn)T在直線y=3上,直線TA,TB分別與曲線C交于點(diǎn)E,F(xiàn),求△TAB與△TEF面積之比的最大值.組卷:265引用:4難度:0.4