2022年新疆昌吉州高考數(shù)學(xué)二診試卷(理科)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.已知復(fù)數(shù)z滿足z(1+i3)=2+i,則|z|=( )
組卷:46引用:1難度:0.7 -
2.設(shè)全集U=R,集合
,集合B={x|lnx≥1},則A∩(?UB)=( ?。?/h2>A={x|x-3x+2≤0}組卷:46引用:2難度:0.8 -
3.《周易》歷來(lái)被人們視為儒家經(jīng)典之首,它表現(xiàn)了古代中國(guó)人對(duì)萬(wàn)事萬(wàn)物深刻而又樸素的認(rèn)識(shí),是中華人文文化的基礎(chǔ),它反映了中國(guó)古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代語(yǔ)解釋為:把陽(yáng)爻“”當(dāng)做數(shù)字“1”,把陰爻“”當(dāng)做數(shù)字“0”,則八卦代表的數(shù)表示如下:
卦名 符號(hào) 表示的二進(jìn)制數(shù) 表示的十進(jìn)制數(shù) 坤 000 0 震 001 1 坎 010 2 兌 011 3 … … … … 組卷:44引用:2難度:0.8 -
4.2022年2月17日-18日,呼圖壁縣第一屆“美麗冰雪,北奧探夢(mèng)”中小學(xué)速滑運(yùn)動(dòng)會(huì)在昌吉州呼圖壁縣青少年示范性綜合實(shí)踐基地管理中心舉行.為了保障比賽的安全,志愿者小王、小李、小方需要清理A、B、C、D、E、F六條短道速滑跑道,每人至少清理一條跑道,則小王清理三條跑道的情況共有多少種( ?。?/h2>
組卷:73引用:1難度:0.8 -
5.已知向量
,|a|=3,且|b|=4,a⊥b,則c=λa+(1-λ)b(λ∈R)的最小值為( )|c|組卷:127引用:1難度:0.5 -
6.數(shù)列{an}是等差數(shù)列,a1=1,a1,a2,a5構(gòu)成公比為q的等比數(shù)列,則q=( ?。?/h2>
組卷:217引用:7難度:0.7 -
7.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)任意x1,x2∈(-∞,0],不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,則不等式f(1-x)<f(1)的解集為( ?。?/h2>
組卷:109引用:3難度:0.7
(二)選考題:共10分.請(qǐng)考生在第22、23題中任選一題作答.如果多做,則按所做的第一題計(jì)分.[選修4?4:坐標(biāo)系與參數(shù)方程]
-
22.在極坐標(biāo)系Ox中,射線l的極坐標(biāo)方程為θ=
(ρ≥0),曲線C的極坐標(biāo)方程為ρ2-4ρsinθ=r2-4(r>0),且射線l與曲線C有異于點(diǎn)O的兩個(gè)交點(diǎn)P,Q.π3
(Ⅰ)求r的取值范圍;
(Ⅱ)求+1|OP|的取值范圍.1|OQ|組卷:185引用:6難度:0.7
[選修4?5:不等式選講]
-
23.已知函數(shù)f(x)=|x|.
(1)求不等式3f(x-1)-f(x+1)>2的解集;
(2)若不等式f(x-a)+f(x+2)≤f(x+3)的解集包含[-2,-1],求a的取值范圍.組卷:75引用:9難度:0.5