大綱版高三(下)高考題同步試卷:1.1 離散型隨機變量的分布列(01)
發(fā)布:2024/4/20 14:35:0
一、解答題(共18小題)
-
1.某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
,中獎可以獲得2分;方案乙的中獎率為23,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.25
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?組卷:1035引用:25難度:0.5 -
2.某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)ξ的分布列為
ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1
(Ⅰ)求事件A:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率P(A);
(Ⅱ)求η的分布列及期望Eη.組卷:2307引用:35難度:0.5 -
3.某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進該批產(chǎn)品前先取出3箱,再從每箱中任意取出2件產(chǎn)品進行檢驗.設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.組卷:806引用:13難度:0.5 -
4.在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如表:
作物產(chǎn)量(kg) 300 500 概率 0.5 0.5 作物市場價格(元/kg) 6 10 概率 0.4 0.6
(Ⅱ)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.組卷:1626引用:14難度:0.1 -
5.甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為
,乙獲勝的概率為23,各局比賽結(jié)果相互獨立.13
(Ⅰ)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(Ⅱ)記X為比賽決勝出勝負時的總局數(shù),求X的分布列和均值(數(shù)學期望).組卷:3841引用:23難度:0.5 -
6.一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.
(Ⅰ)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;
(Ⅱ)用X表示在未來3天里日銷售量不低于100個的天數(shù),求隨機變量X的分布列,期望E(X)及方差D(X).組卷:3665引用:34難度:0.5
一、解答題(共18小題)
-
17.某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:
X 1 2 3 4 Y 51 48 45 42
(I)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(II)在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.組卷:796引用:12難度:0.5 -
18.某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩組中共抽取3名工人進行技術(shù)考核.
(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的工人中恰有1名女工人的概率;
(Ⅲ)記ξ表示抽取的3名工人中男工人數(shù),求ξ的分布列及數(shù)學期望.組卷:1896引用:13難度:0.1