2022-2023學年河南省鄭州市新密實驗高級中學高二(上)第七次段考數(shù)學試卷
發(fā)布:2024/12/22 2:0:2
一、單選題(本大題共12小題,共60.0分。在每小題列出的選項中,選出符合題目的一項)
-
1.直線xcosα+y+4=0的傾斜角的取值范圍( ?。?/h2>
組卷:145引用:6難度:0.7 -
2.圓心為(0,1)且與x軸相切的圓的方程為( )
組卷:9引用:2難度:0.7 -
3.已知直線x+ay-2=0與圓x2+y2=1相切,則a的值是( ?。?/h2>
組卷:269引用:5難度:0.8 -
4.已知數(shù)列{an}的前n項和
,則a4=( ?。?/h2>Sn=n2組卷:109引用:1難度:0.8 -
5.已知數(shù)列{an}中,a1=2,an=1-
(n≥2),則a2021等于( ?。?/h2>1an-1組卷:669引用:15難度:0.6 -
6.2022年北京冬奧會開幕式始于24節(jié)氣倒計時,它將中國人的物候文明、傳承久遠的詩歌、現(xiàn)代生活的畫面和諧統(tǒng)一起來.我國古人將一年分為24個節(jié)氣,如圖所示,相鄰兩個節(jié)氣的日晷長變化量相同,冬至日晷長最長,夏至日晷長最短,周而復始.已知冬至日晷長為13.5尺,夏至日晷長為1.5尺,則一年中夏至到秋分的日晷長的和為( ?。┏撸?/h2>
組卷:148引用:5難度:0.5 -
7.已知A(-1,1,2)、B(1,0,-1),設(shè)D在直線AB上,且
=2AD,設(shè)C(λ,DB+λ,1+λ),若CD⊥AB,則λ的值為( ?。?/h2>13組卷:386引用:8難度:0.7
三、解答題(本大題共6小題,共70.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
-
21.如圖,矩形ABCD和菱形ABEF所在的平面相互垂直,∠ABE=60°,G為BE的中點.
(Ⅰ)求證:AG⊥平面ADF;
(Ⅱ)若AB=BC,求二面角D-CA-G的余弦值.3組卷:493引用:16難度:0.5 -
22.已知拋物線T:x2=2py(p>0),直線y=kx+1交T于A,B兩點,且當k=1時,|AB|=8.
(1)求p的值;
(2)如圖,拋物線T在A,B兩點處的切線分別與y軸交于C,D,AC和BD交于G,+GC+GD=0.證明:存在實數(shù)λ,使得GE=λGE.AB組卷:221引用:7難度:0.4