《第2章 圓錐曲線與方程》2011年單元測(cè)試卷(廣州四十一中)
發(fā)布:2024/4/20 14:35:0
一、選擇題(每題3分,共30分).
-
1.已知△ABC的頂點(diǎn)B,C在橢圓
+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是( ?。?/h2>x23組卷:3844引用:96難度:0.9 -
2.已知雙曲線3x2-y2=9,則雙曲線右支上的點(diǎn)P到右焦點(diǎn)的距離與點(diǎn)x2到右準(zhǔn)線的距離之比等于( ?。?/h2>
組卷:178引用:6難度:0.9 -
3.方程2x2-5x+2=0的兩個(gè)根可分別作為( )
組卷:682引用:17難度:0.9 -
4.若拋物線y2=2px的焦點(diǎn)與橢圓
=1的右焦點(diǎn)重合,則p的值為( ?。?/h2>x26+y22組卷:300引用:187難度:0.9 -
5.平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,那么( ?。?/h2>
組卷:1488引用:31難度:0.9 -
6.已知雙曲線
=1(a>0,b>0)的一條漸近線方程為y=x2a2-y2b2x,則雙曲線的離心率為( ?。?/h2>43組卷:784引用:74難度:0.9
三、解答題(共50分).
-
19.已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)A(-1,0),B(1,0)連線的斜率的積為定值-2.
(1)試求動(dòng)點(diǎn)P的軌跡方程C.
(2)設(shè)直線l:y=x+1與曲線C交于M、N兩點(diǎn),求|MN|.組卷:171引用:13難度:0.3 -
20.已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,右頂點(diǎn)為D(2,0),設(shè)點(diǎn)F(-3,0).A(1,12)
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(3)過原點(diǎn)O的直線交橢圓于點(diǎn)B,C,求△ABC面積的最大值.組卷:733引用:34難度:0.1