2022-2023學(xué)年廣東省五校華附、省實(shí)、深中、廣雅、六中高二(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
-
1.集合A={x|2sinx=1,x∈R},B={x|x2-3x≤0},則A∩B=( )
組卷:108引用:3難度:0.8 -
2.某地天氣預(yù)報(bào)中說(shuō)未來(lái)三天中該地下雪的概率均為0.6,為了用隨機(jī)模擬的方法估計(jì)未來(lái)三天中恰有兩天下雪的概率,用計(jì)算機(jī)產(chǎn)生1~5之間的隨機(jī)整數(shù),當(dāng)出現(xiàn)隨機(jī)數(shù)1,2或3時(shí),表示該天下雪,其概率為0.6,每3個(gè)隨機(jī)數(shù)一組,表示一次模擬的結(jié)果,共產(chǎn)生了如下的20組隨機(jī)數(shù).
522 553 135 354 313 531 423 521 541 142 125 323 345 131 332 515 324 132 255 325 組卷:124引用:3難度:0.8 -
3.設(shè)復(fù)數(shù)z滿足
,則z在復(fù)平面上對(duì)應(yīng)的圖形是( )|z-1|=|z-z|組卷:91引用:1難度:0.8 -
4.在△ABC中,已知a=3,
,b=x,滿足此條件的三角形只有一個(gè),則x滿足( ?。?/h2>A=π3組卷:387引用:2難度:0.5 -
5.圓內(nèi)接四邊形ABCD中,AD=2,CD=4,BD是圓的直徑,則
=( ?。?/h2>AC?BD組卷:307引用:3難度:0.6 -
6.已知數(shù)列{an}為等差數(shù)列,若a2+3a8<0,a6?a7<0,且數(shù)列{an}的前n項(xiàng)和有最大值,那么Sn取得最小正值時(shí)n為( ?。?/h2>
組卷:381引用:4難度:0.7 -
7.過(guò)橢圓
+x2a2=1(a>b>0)的左焦點(diǎn)F(-1,0)的直線與橢圓交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)C,F(xiàn)是線段AB的三等分點(diǎn),則該橢圓的標(biāo)準(zhǔn)方程是( )y2b2組卷:120引用:2難度:0.6
四、解答題(本題共6小題,共70分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)
-
21.已知四棱錐E-ABCD中,AB=4CD=4,AE=2,CD∥AB,AD=2
,∠DAB=45°,面ABCD⊥面ABE,CE=2.17
(1)求證:AE⊥CB;
(2)求面ADE與面BDE所成的銳二面角的余弦值.組卷:103引用:1難度:0.6 -
22.換元法在數(shù)學(xué)中應(yīng)用較為廣泛,其目的在于把不容易解決的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)情景.例如,已知a>0,b>0,a+b=4,求a3+b3的最小值.其求解過(guò)程可以是:
設(shè)a=2-t,b=2+t,其中-2<t<2,
則a3+b3=(2-t)3+(2+t)3=(8-12t+6t2-t3)+(8+12t+6t2+t3)=16+12t2≥16
當(dāng)t=0時(shí)a3+b3取得最小值16,這種換元方法稱為“對(duì)稱換元”.已知平面內(nèi)一動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之和為4.
(1)請(qǐng)利用上述方法,求P點(diǎn)的軌跡方程M;
(2)過(guò)軌跡M與x軸負(fù)半軸交點(diǎn)A作斜率為k的直線交軌跡M于另一點(diǎn)B,連接BF2并延長(zhǎng)交M于點(diǎn)C,若F1C⊥AB,求k的值.組卷:43引用:1難度:0.4