當(dāng)前位置:
知識(shí)點(diǎn)挑題
請(qǐng)展開(kāi)查看知識(shí)點(diǎn)列表
>
<
更多>>
原創(chuàng)
更新中
|
科學(xué)提煉重難點(diǎn)
整理歸納易錯(cuò)點(diǎn)
精準(zhǔn)定位突破點(diǎn)
深度揭秘解題技巧
瀏覽次數(shù):981
更新:2025年01月21日
|
原創(chuàng)
更新中
|
解題模型
因材施教
夯實(shí)基礎(chǔ)
穩(wěn)步提升
瀏覽次數(shù):663
更新:2025年01月21日
|
2491.設(shè)
,則( )a=12,b=ln32,c=π2sin12發(fā)布:2024/12/20 7:0:1組卷:131引用:3難度:0.62492.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( ?。?/h2>ax?f(ax)lnx≥f(lnx)?lnxax發(fā)布:2024/12/20 7:0:1組卷:225引用:6難度:0.62493.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0發(fā)布:2024/12/20 6:0:1組卷:262引用:9難度:0.42494.有5名學(xué)生志愿者到3個(gè)小區(qū)參加疫情防控常態(tài)化宣傳活動(dòng),每名學(xué)生只去1個(gè)小區(qū),每個(gè)小區(qū)至少安排1名學(xué)生,則不同的安排方法為( )
發(fā)布:2024/12/20 5:0:2組卷:178引用:3難度:0.72495.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由;
(Ⅲ)估計(jì)居民月均用水量的中位數(shù).發(fā)布:2024/12/20 5:0:2組卷:1077引用:26難度:0.72496.在等比數(shù)列{an}中,a1+a2=4,若a1,a2+2,a3成等差數(shù)列,則{an}的公比為( ?。?/h2>
發(fā)布:2024/12/20 5:0:2組卷:614引用:6難度:0.82497.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AB,A1D1的中點(diǎn),則( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:377引用:4難度:0.42498.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=e-x(x-1).則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:296引用:9難度:0.52499.已知函數(shù)f(x)=2ax-axcosx-sinx.
(1)當(dāng)a=1時(shí),求f(x)在[0,π]上的最大值;
(2)當(dāng)x>0時(shí),f(x)≥0,求a的取值范圍.發(fā)布:2024/12/20 4:30:1組卷:271引用:5難度:0.32500.某市為了解全市12000名高一學(xué)生的體能素質(zhì)情況,在全校高一學(xué)生中隨機(jī)抽去了1000名學(xué)生進(jìn)行體能測(cè)試,并將1000名的體能測(cè)試成績(jī)整理成如下頻率分布直方圖.根據(jù)此頻率分布直方圖,下列結(jié)論中正確的是( ?。?/h2>
發(fā)布:2024/12/20 3:30:1組卷:473引用:3難度:0.6