設函數(shù)f(x)=(x-a)2,x≤0 x2-2x+3+a,x>0
,若f(0)是函數(shù)f(x)的最小值,則實數(shù)a的取值范圍是( ?。?/h1>
f
(
x
)
=
( x - a ) 2 , x ≤ 0 |
x 2 - 2 x + 3 + a , x > 0 |
【考點】函數(shù)的最值.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:817引用:4難度:0.5
相似題
-
1.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內(nèi)存在最大值,且最大值為2,g(x)=
,若對任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實數(shù)m的取值可以是( ?。?/h2>12發(fā)布:2024/12/29 13:30:1組卷:133引用:3難度:0.5 -
2.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( ?。?/h2>13發(fā)布:2024/12/29 3:0:1組卷:110引用:4難度:0.9 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:121引用:4難度:0.5