如果三個(gè)正整數(shù)a,b,c滿足:a2+b2=c2,那么我們稱這一組數(shù)為勾股數(shù).
例如:32+42=52,則3、4、5是一組勾股數(shù),42+52≠62,則4、5、6不是一組勾股數(shù).
(1)利用一些構(gòu)成勾股數(shù)的公式也可以寫(xiě)出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派曾提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,是收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書(shū)中提到:當(dāng)a=12(m2-n2),b=mn,c=12(m2+n2)(m,n為正整數(shù),m>n)時(shí),a,b,c,構(gòu)成一組勾股數(shù):利用上述結(jié)論,解決如下問(wèn)題:已知某三角形的三邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n=5,求該直角三角形另兩邊的長(zhǎng).
1
2
(
m
2
-
n
2
)
1
2
(
m
2
+
n
2
)
【答案】(1)證明過(guò)程見(jiàn)解答;
(2)12,35.
(2)12,35.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:200引用:3難度:0.5
相似題
-
1.已知a,b,c為△ABC的三條邊的長(zhǎng),
(1)當(dāng)b2+2ab=c2+2ac時(shí),試判斷△ABC屬于哪一類三角形;
(2)判斷a2-b2-2bc-c2的值的符號(hào),并說(shuō)明理由.發(fā)布:2025/7/1 13:0:6組卷:207引用:1難度:0.3 -
2.已知:a>b>0,且a2+b2=
ab,那么103的值為b+ab-a發(fā)布:2025/6/25 7:30:2組卷:719引用:4難度:0.9 -
3.若a2-ab=7-m,b2-ab=9+m,則a-b的值為( ?。?/h2>
A.2 B.±2 C.4 D.±4 發(fā)布:2025/6/25 6:0:1組卷:581引用:2難度:0.7