試卷征集
加入會員
操作視頻

已知:正整數(shù)列{an}各項均不相同,n∈N*,數(shù)列{Tn}的通項公式Tn=
a
1
+
a
2
+
+
a
n
1
+
2
+
+
n

(Ⅰ)若T5=3,寫出一個滿足題意的正整數(shù)列{an}的前5項:
(Ⅱ)若a1=1,a2=2,Tn=
a
n
n
,求數(shù)列{an}的通項公式;
(Ⅲ)若?k∈N*,都有ak≤n,是否存在不同的正整數(shù)i,j,使得Ti,Tj為大于1的整數(shù),其中
n
2
≤i<j.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/28 8:51:19組卷:68引用:2難度:0.3
相似題
  • 1.定義
    n
    p
    1
    +
    p
    2
    +
    +
    p
    n
    為n個正數(shù)p1,p2,…,pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項的“均倒數(shù)”
    1
    3
    n
    +
    1
    ,又bn=
    a
    n
    +
    2
    6
    ,則
    1
    b
    1
    b
    2
    +
    1
    b
    2
    b
    3
    +…+
    1
    b
    9
    b
    10
    =(  )

    發(fā)布:2024/12/29 11:30:2組卷:112引用:1難度:0.7
  • 2.設(shè)數(shù)列{an}的前n項和是Sn,令
    T
    n
    =
    S
    1
    +
    S
    2
    +
    ?
    +
    S
    n
    n
    ,稱Tn為數(shù)列a1,a2,…,an的“超越數(shù)”,已知數(shù)列a1,a2,…,a504的“超越數(shù)”為2020,則數(shù)列5,a1,a2,…,a504的“超越數(shù)”為( ?。?/h2>

    發(fā)布:2024/12/29 9:0:1組卷:127引用:3難度:0.5
  • 3.十九世紀(jì)下半葉集合論的創(chuàng)立奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ).著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征其操作過程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(
    1
    3
    ,
    2
    3
    ),記為第一次操作;再將剩下的兩個區(qū)[0,
    1
    3
    ],[
    2
    3
    ,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長度之和不小于
    9
    10
    ,則需要操作的次數(shù)n的最小值為(  )(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

    發(fā)布:2024/12/29 13:30:1組卷:141引用:17難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正