小輝同學(xué)觀看2022卡塔爾世界杯時(shí)發(fā)現(xiàn),優(yōu)秀的球員通常都能選擇最優(yōu)的點(diǎn)射門(mén)(僅從射門(mén)角度大小考慮).這引起了小輝同學(xué)的興趣,于是他展開(kāi)了一次有趣的數(shù)學(xué)探究.
【提出問(wèn)題】如圖1所示.球員帶球沿直線BC奔向球門(mén)PQ,
探究:是否存在一個(gè)位置,使得射門(mén)角度最大.
【分析問(wèn)題】因?yàn)榫€段PQ長(zhǎng)度不變,我們聯(lián)想到圓中的弦和圓周角.
如圖2,射線BC與⊙O相交,點(diǎn)M,點(diǎn)A,點(diǎn)N分別在圓外、圓上、圓內(nèi),連接NP,NQ,AP,AQ,MP,MQ.
【解決問(wèn)題】
(1)如圖2,比較∠PMQ、∠PAQ、∠PNQ的大?。?!--BA-->∠PMQ<∠PAQ<∠PNQ∠PMQ<∠PAQ<∠PNQ(用“<”連接起來(lái)).
(2)如圖3,點(diǎn)A是射線BC上一動(dòng)點(diǎn)(點(diǎn)A不與點(diǎn)B重合).證明:當(dāng)△APQ的外接圓⊙O與射線BC相切時(shí),∠PAQ最大.
(3)【延伸拓展】在(2)的條件下,如果PQ=4,PB=5,tanB=2.當(dāng)∠PAQ最大時(shí).證明:∠PAQ=90°-∠B.
【考點(diǎn)】圓的綜合題.
【答案】∠PMQ<∠PAQ<∠PNQ
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:148引用:2難度:0.1
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1801引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點(diǎn)E是CD上的動(dòng)點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過(guò)點(diǎn)F作FG⊥BE于點(diǎn)G.
(1)當(dāng)E是CD的中點(diǎn)時(shí):tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時(shí)BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.發(fā)布:2024/12/23 12:0:2組卷:644引用:5難度:0.4 -
3.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長(zhǎng)度.
圖1為點(diǎn)P在⊙O外的情形示意圖.
(1)若點(diǎn)B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR,直接寫(xiě)出滿足條件的線段PQ長(zhǎng)度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~