已知a=(2sinx,cos2x),b=(3cosx,2),f(x)=a?b.
(1)求f(π6)的值.
(2)求函數(shù)f(x)在[-π4,π6]區(qū)間上的最大值和最小值.
a
=
(
2
sinx
,
cos
2
x
)
b
=
(
3
cosx
,
2
)
f
(
x
)
=
a
?
b
π
6
π
4
π
6
【考點(diǎn)】三角函數(shù)的最值;平面向量數(shù)量積的性質(zhì)及其運(yùn)算.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:135引用:2難度:0.7
相似題
-
1.設(shè)函數(shù)f(x)=
sinxcosx+cos2x+a
(1)寫出函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[,-π6]時,函數(shù)f(x)的最大值與最小值的和為π3,求不等式f(x)>1的解集.32發(fā)布:2024/12/29 12:30:1組卷:431引用:4難度:0.6 -
2.若函數(shù)
(ω>0)在(f(x)=sin(ωx+π6),-π4)有最大值無最小值,則ω的取值范圍是( )π4發(fā)布:2024/12/29 6:0:1組卷:225引用:3難度:0.7 -
3.若函數(shù)
,f(x)=3sinx-cosx,則函數(shù)f(x)值域?yàn)椋ā 。?/h2>x∈[-π2,π2]發(fā)布:2024/12/29 10:0:1組卷:53引用:3難度:0.7