某數(shù)學興趣小組在數(shù)學課外活動中,對多邊形內(nèi)兩條互相垂直的線段做了如下探究:
【觀察與猜想】
(1)如圖①,在正方形ABCD中,點E,F(xiàn)分別是AB、AD上的兩點,連接DE,CF,DE⊥CF,求證△AED≌△DFC.
【類比探究】
(2)如圖②,在矩形ABCD中,AD=7,CD=4,點E是邊AD上一點,連接CE,BD,且CE⊥BD,求CEBD的值.
【拓展延伸】
(3)如圖③,在Rt△ABC中,∠ACB=90°,點D在BC邊上,連結(jié)AD,過點C作CE⊥AD于點E,CE的延長線交AB邊于點F.若AC=3,BC=4,BF=83,求CD的值.
CE
BD
BF
=
8
3
【考點】相似形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/24 14:0:35組卷:731引用:6難度:0.4
相似題
-
1.如圖1,Rt△ABC中,AC=6cm,BC=8cm,點P以2cm/s的速度從A處沿AB方向勻速運動,點Q以1cm/s的速度從C處沿CA方向勻速運動.連接PQ,若設運動的時間為t(s)(0<t<5).解答下列問題:
(1)當t為何值時,△APQ與△ABC相似?
(2)設四邊形BCQP的面積為y,求出y與t的函數(shù)關(guān)系式,并求當t為何值時,y的值最小,寫出最小值;
(3)如圖2,將△APQ沿AP翻折,使點Q落在Q′處,連接AQ′,PQ′,若四邊形AQPQ′是平行四邊形,求t的值.發(fā)布:2024/12/2 8:0:1組卷:105引用:2難度:0.5 -
2.在△ABC中,∠C=90°,AC=6cm,BC=8cm.
(1)求AB的長;
(2)如圖1,點P從A點出發(fā)以每秒2cm的速度沿AB方向勻速運動,同時點Q從C點出發(fā)以每秒1cm的速度沿CA方向勻速運動.連接PQ,若設運動的時間為t秒(0<t<5).
①當t為何值時,以A、P、Q為頂點的三角形和以A、B、C為頂點的三角形相似;
②設四邊形BCQP的面積為y,求y的最小值;
③如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′,當t為何值時,四邊形AQPQ′為平行四邊形.發(fā)布:2024/12/2 8:0:1組卷:241引用:1難度:0.3 -
3.如圖1,已知△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/秒,連接PQ,設運動的時間為t秒(0≤t≤4)
(1)求△ABC的面積;
(2)當t為何值時,PQ∥BC;
(3)當t為何值時,△AQP面積為S=6cm2;
(4)如圖2,把△AQP翻折,得到四邊形AQPQ′能否為菱形?若能,求出菱形的周長;若不能,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:91引用:1難度:0.5
把好題分享給你的好友吧~~